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Discussion Guide 
 

Introduction and Background for the Workshop 
 
During clinical development of medical products and prior to regulatory review and approval, it is nearly 
impossible to anticipate and study all possible very rare safety concerns. Challenges to measuring these 
include relatively small sample sizes and shorter durations of clinical trials as well as patient populations 
and prescription drug uses that may vary from what was studied. To address these challenges, the U.S. 
Food and Drug Administration (FDA) implements a variety of safety surveillance approaches that include 
continuous monitoring and assessment. These approaches require close collaboration between key 
stakeholders to effectively capture and analyze potential signals of adverse events, and to communicate 
messages about the safety of medicines.  
 
Traditionally, the FDA has relied on passive approaches to identify safety signals based on reports of 
possible safety issues submitted by patients, providers, and drug manufacturers to the FDA. Given the 
limitations of passive surveillance (including reporting time lags, variable quality of reports that FDA 
receives, as well as substantial under-reporting) the FDA has developed an active safety surveillance 
system called the Sentinel System to complement and enhance passive surveillance.  
 
The Sentinel System provides the Agency with unique capabilities to improve the speed and efficiency of 
safety assessments to analyze uptake or usage of new drugs or therapies on a more diverse range of 
patient populations. The Sentinel System was developed in response to a mandate in the Food and Drug 
Amendments Act of 2007 (P.L. 110-85) to implement an active postmarket risk identification and 
analysis (ARIA) system utilizing data collected as part of routine care delivery. There are three categories 
of active safety surveillance activities outlined in the legislation, which include assessment of:  
 

 Unexpected serious risks when available data indicates potential for serious risk (i.e., signal 
detection and/or signal refinement), 

 Signals of serious risk related to the use of the drug (i.e., signal refinement), and  

 Known serious risks related to the use of the drug (i.e., signal evaluation).* 
 
The FDA initially prioritized the development of signal refinement and evaluation capabilities.1 Since its 
launch, Sentinel has matured into a fully functional and core part of FDA’s safety surveillance portfolio of 
activities, and the Agency now intends to strengthen and enhance Sentinel’s signal detection  
capabilities. Successfully implementing signal detection in the Sentinel System will require developing 
solutions for a variety of challenges related to determining when the Agency should conduct signal 
detection, weighing statistical and operational considerations when using the same database for both  

                                                           
* Appendix A provides an updated glossary of key terms used in the Sentinel System presented at the 10th Annual 
Sentinel Initiative Public Workshop convened on February 7, 2018, and includes complete definitions for signal 
detection, signal refinement, and signal evaluation.  

https://healthpolicy.duke.edu/events/2018-sentinel-initiative-annual-public-workshop
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signal identification and subsequent analysis, and developing transparent processes for communicating 
potentially uncertain study results to stakeholders.  
 
The Robert J. Margolis, MD, Center for Health Policy at Duke University is convening a public workshop 
on December 3, 2018, under cooperative agreement with the FDA to solicit broad stakeholder input on 
potential frameworks for implementing signal detection. This discussion will consider the landscape of 
methodological approaches and opportunities, as well as challenges involved with operationalizing 
these approaches within Sentinel’s distributed data network.  

 

Current Approaches for Detecting Potential Signals of Adverse Drug Events  
 
Monitoring product safety is traditionally implemented through passive surveillance systems. These 
systems seek to gather risk information about adverse events, medication error reports, product quality 
complaints, and other serious events that may be associated with use of an FDA regulated medical 
product. This information is documented by health care professionals, consumers, patients, and others 
as a voluntary or spontaneous report. These reports are then submitted voluntarily either to the 
product’s manufacturer, who will subsequently report them to the FDA according to regulations, or to 
the FDA directly via the MedWatch program.2  
 
The primary data source of passive surveillance monitoring is the FDA Adverse Event Reporting System 
(FAERS) database.3,4 The FDA relies on FAERS for activities such as detecting new safety concerns that 
might be related to a marketed product or evaluating a manufacturer's compliance with reporting 
regulations. While FAERS data serve as one source of voluntary reporting to detect signals, there are 
also other data sources such as prelicensure safety data, local or regional data sources (e.g., Joint 
Commission, medical literature, as well as postmarket studies conducted as part of a postmarket 
commitment or requirement). These data sources provide the FDA with an important and effective tool 
to analyze health outcome data and to identify and mitigate risk, especially for signals of serious and 
rare adverse event outcomes.  
 
While passive data sources are an important part of FDA’s portfolio of safety surveillance tools, these 
data sources also have limitations. There is often a large time lag with reporting potential risk since 
providers and other key stakeholders are unaware of unknown adverse events when the product 
receives marketing approval. There is widely acknowledged variability in the quality of reports, and 
substantial under reporting of events despite the large number of reports that FDA receives annually 
(1.8 million reports in 2017†). The information provided in these reports alone does not usually allow for 
establishing of causality between a medical product and adverse event, which makes it challenging to 

determine the severity and magnitude of the safety event being reported.5,6 While a number of 
innovative and promising approaches have been developed to quickly mine large volumes of data from 
passive reporting systems, such as text mining and natural language processing, they are not yet used 
routinely.7,8 
 
 
 

                                                           
† Statistic cited from the FAERS Public Dashboard: https://fis.fda.gov/sense/app/d10be6bb-494e-4cd2-82e4-
0135608ddc13/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis. 
 

https://fis.fda.gov/sense/app/d10be6bb-494e-4cd2-82e4-0135608ddc13/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis
https://fis.fda.gov/sense/app/d10be6bb-494e-4cd2-82e4-0135608ddc13/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis
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Opportunities to Complement Passive Surveillance with the Sentinel System  
 
Given the gaps and challenges with passive surveillance, there is a unique opportunity for the FDA and 
stakeholders to further explore opportunities for routinely utilizing Sentinel’s distributed data network 
and constituent Data Partners to perform signal detection.   

Sentinel Data Partners consist of national health insurance plans, large integrated delivery systems, and 
health care organizations that collaborate with the Sentinel Operations Center (SOC) to conduct active 
safety surveillance activities.‡ Data Partners share summary information derived from longitudinal claims 
data and growing amounts of clinical data derived from electronic health records (EHRs) through a 
common data model (CDM). These data provide superior quality relative to spontaneous reports and 
can generate signals of potential risks based on elevated rates of adverse event outcomes. Such data 
also provides a clear denominator of exposed patient populations with important information on 
specific medications dispensed, including dosage and duration that can inform benefit risk profiles of 
drugs.5  The CDM makes it possible to execute standardized modular programs developed by the SOC, as 
well as protocol-based assessments, to conduct rapid safety assessments.  

When the FDA established the Sentinel System, the initial priority was developing the data 
infrastructure needed to monitor and rapidly assess known safety concerns. This includes potential 
issues identified in pre-approval clinical trials or through data sources of passive surveillance systems. 
With the growing maturity of the Sentinel System’s data infrastructure and demonstrated successes 
impacting regulatory decision making, it may now be feasible to implement signal detection capabilities.  
 
Given the importance of and need to quickly identify potential signals of unexpected risk, the FDA 
intends to incorporate signal detection tools into its existing suite of modular programs to enable rapid 
identification of patient populations exposed to the medical product and assessment of adverse event 
outcomes. While not a complete list, a range of approaches that will be discussed at the public meeting 
are briefly summarized in Table 1; and additional background information is provided on these 
techniques in Appendix B. These strategies apply different types of controls, pre- and post- exposure 
windows, and other key operating characteristics aimed at reducing biases and key confounders that 
would otherwise lead to false positive safety signals and systematic error.  
 
Table 1. Potential Statistical Approaches for Implementing Signal Detection in the Sentinel System. 

Method Brief Description 

TreeScan9,10 Statistical signal detection approach grounded in well-known 
epidemiologic designs and scan statistics. Unconditional approaches 
require external information to specify the null hypothesis whereas 
conditional approaches are conditioned on the incoming dataset. 

Bayesian Shrinkage 
Techniques and Meta-
Analyses11,12,13,14 

These techniques reduce variation by combining multiple examples to 
allow borrowing strength after estimating a prior distribution of average 
effects. 

Large-Scale Comparative 
Effectiveness Studies with 
Propensity Models15,16,17 

Analytical approach used to systematically apply best practices for 
observational studies at large-scale using propensity score stratification, 
expert-crafted outcome definitions, and multiple sensitivity analyses to 
answer hundreds of thousands of research questions in a distributed 
network of databases. Negative and positive controls (i.e. research 

                                                           
‡ A list of current Sentinel Data Partners is provided in Appendix C. 
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questions with known answers) are used to evaluate residual bias, and 
empirical calibration of p-values and confidence intervals. 

Temporal Pattern 
Discovery18,19,20,21 

The self-controlled cohort analysis within the Temporal Pattern 
Discovery framework compares the observed-to-expected ratio of 
medical events during post-exposure risk window(s) with those in a set 
of distinct control windows in the same patients. It utilizes an external 
control group to account for systematic differences between the 
different windows, thus combining within- and between-patient 
confounder adjustment in a single measure. 

 
While these techniques serve as promising approaches for implementing signal detection, the purpose 
of this workshop is not to select a single, best method, but rather to identify a range of options that 
account for the strengths and potential limitations of each technique given a set of parameters for signal 
detection analyses.  It may also be possible to combine these techniques in a way that complements and 
further enhances the strengths of each approach while reducing their limitations to control against key 
biases and confounding variables.  
 
Key Statistical Challenges and Operational Considerations for Implementing Signal Detection in the 
Sentinel System’s Distributed Data Environment. 
 
Beyond the considerations for implementing a specific signal detection technique, there are also 
important statistical challenges and operational needs that must be addressed to implement signal 
detection within Sentinel’s distributed database approach. These include statistical issues regarding data 
reuse and considerations for communicating potential result uncertainty to key stakeholders as part of a 
comprehensive signal management strategy.   
 
Systematic errors including selection bias, information bias, and confounding could persist when re-
using data from the same database to both generate and subsequently refine signals identified with a 
medical product and adverse event outcome pair.22 One proposed solution is a partitioned dataset, 
however some situations may not allow for this when sample size and statistical power is important to 
the analysis. Moreover, this would principally reduce random error, but systematic errors may persist in 
the follow-up investigation. 
 
In 2011, the FDA charged an expert committee to deliberate and provide non-binding recommendations 
for using modular programs that would allow for comparison of adverse event rates between different 
exposure groups. The committee developed a framework to potentially address false positive and false 
negative signals when conducting rapid assessments with modular programs for signal generation, signal 
refinement, and signal evaluation. 23 A key element of this framework included categorizing safety 
surveillance activities according to the strength of knowledge for a suspected association (also known as 
a “prior”); however, the committee did not seek to define levels of strength.  
 
In response to the committee’s findings, some stakeholders noted that the dynamic nature of evidence 
development and shifting patterns of medical product use may make it difficult to establish 
standardized definitions for strength of prior evidence, and therefore challenging to decide when a 
signal detection analysis is appropriate to implement. Further, implementing an approach that relies on 
well-defined parameters may exclude other important regulatory factors such as the seriousness of the 
adverse event.24  
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In addition to these important statistical considerations, policies and processes are also needed to 
communicate potential signal risk with key stakeholders. These processes could build on the FDA’s 
foundation of communication and transparency commitments, and become integrated into existing 
processes the FDA uses to communicate with sponsors and other key stakeholders. For Sentinel signal 
refinement and evaluation studies, the Agency already posts the analytic tool used, outcome findings, 
and regulatory actions taken for the associated medical product on the Sentinel Initiative’s public 
website. § Posting this information allows for replication of analyses by stakeholders using other data 
systems, and aligns with the key founding principles of privacy, security, and transparency in which the 
Sentinel System was built. While FDA has robust regulatory systems in place for serious, known safety 
events, the Agency is committed to strengthening this framework to identify and mitigate unexpected 
safety events using signal detection. 
 
Stakeholder feedback obtained during the workshop will inform FDA’s strategic planning to develop and 
implement signal detection capabilities, and support the Agency’s continuing commitment to advance 
and modernize the Sentinel System. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Funding for this conference was made possible in part by a cooperative agreement from the U.S. Food and Drug Administration Center for 

Drug Evaluation and Research. The views expressed in written conference materials or publications and by speakers and moderators do not 

necessarily reflect the official policies of the Department of Health and Human Services nor does mention of trade names, commercial 

practices, or organizations imply endorsements by the U.S. Government. 

                                                           
§ Sentinel analyses and findings can be viewed at:  https://www.sentinelinitiative.org/drugs/how-aria-analyses-
have-been-used-fda. 
 

https://www.sentinelinitiative.org/drugs/how-aria-analyses-have-been-used-fda
https://www.sentinelinitiative.org/drugs/how-aria-analyses-have-been-used-fda
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Appendix A: Glossary of Sentinel System Terms  
 
Active Risk Identification and Analysis (ARIA): The U.S. Food and Drug Administration’s (FDA) active 

post-market risk identification and analysis system, which is comprised of pre-defined, parameterized, 

reusable routine querying tools, combined with the electronic data in the Sentinel Common Data Model. 

Because ARIA uses parameterized tools and a trusted multi-site distributed database that undergoes 

continuous quality checks and refreshes, safety analyses can be done more efficiently to conduct 

medical product safety surveillance to fulfill the mandate in the FDA Amendments Act of 2007. 

 

Biologics Effectiveness and Safety (BEST) Initiative: A system currently being developed to expand and 

enhance FDA’s Center for Biologics Evaluation and Research (CBER) post-market surveillance 

capabilities. The primary goals of BEST are a) to develop a system using electronic health records (EHR) 

and claims data sources covering a large proportion of the U.S. population, automated query tools, and 

additional infrastructure; b) to develop improved automated adverse events data collection, analysis, 

and reporting techniques for biologics by using methods such as natural language processing and 

machine learning. 

Blood Safety Surveillance Continuous Active Network (BloodSCAN): A subcomponent of the CBER 

Sentinel Program focusing on surveillance and recipient safety evaluation of blood components and 

blood-derived products.  

Cohort Identification and Descriptive Analysis (CIDA) Tool: CIDA serves as the foundation of the routine 

querying system, and is responsible for identifying, extracting, and characterizing cohorts of interest 

from the SDD based on the specification of a number of requester-defined options (e.g., continuous 

enrollment requirements, incidence criteria, inclusion/exclusion criteria). 

 

FDA-Catalyst: Activities leverage the Sentinel Infrastructure by utilizing the data available through its 

data partners and supplementing it with data from interventions or interactions with members and/or 

providers.           

 

Post-licensure Rapid Immunization Safety Monitoring (PRISM): A subcomponent of CBER Sentinel 

Program focusing on vaccine safety surveillance for evaluation of potential safety signals identified 

during pre-market and post-market reviews.  

Routine Querying Tools (Modular Programs): Sentinel’s routine querying tools include modular 
programs, summary tables, and software toolkits. Modular programs are grouped into three levels:  

 Level 1 modular program queries identify cohorts of interest and, for some cohorts, can perform 
unadjusted and minimally adjusted (i.e., by Data Partner, age group, sex, and year) analyses.  

 Level 2 modular program queries identify cohorts of interest, perform more complex 
adjustment for confounding, and generate effect estimates and confidence intervals.  

 Level 3 modular program queries identify cohorts of interest and perform more complex 
adjustment for confounding repeatedly as part of prospective sequential analysis.  
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Sentinel Collaborating Institutions: A network of Data and Academic Partners that work with the FDA 

and Sentinel Coordinating Center to provide access to both healthcare data and scientific, technical, and 

organizational expertise. 

Sentinel Coordinating Center: The Sentinel Coordinating Center includes the Sentinel Operations Center 
(SOC), comprised of the Applied Surveillance, Scientific Systems, and Administration Divisions housed at 
the Harvard Pilgrim Health Care Institute (HPHCI), and advisory groups. Both the Sentinel Coordinating 
Center and the SOC are led by the Sentinel Principal Investigator at HPHCI. 
 
Sentinel Data Partners: Data Partners in the Sentinel System include a diverse group of organizations 
including academic medical centers, healthcare systems, and health insurance companies. Sentinel Data 
Partners maintain physical and operational control over electronic data in their existing environments.  
 

Sentinel Infrastructure: The underlying data infrastructure created to enable analysis within the Sentinel 

System. The Sentinel Infrastructure involves: 1) a distributed data approach in which Data Partners 

maintain physical and operational control over electronic data in their existing environments; and 2) a 

Common Data Model consisting of standardized administrative and clinical information across Data 

Partners. The Sentinel Infrastructure has the potential to allow analysis of the data for other purposes 

besides safety for the FDA or those outside the FDA.  

 

Sentinel Initiative: A multi-year effort beginning in 2008 to create a national electronic system for 

monitoring the performance of FDA-regulated medical products to improve the FDA’s ability to identify 

and assess medical product safety issues.  

 

Sentinel System: An active surveillance system that uses routine querying tools and pre-existing 

electronic healthcare data from multiple sources to monitor the safety of regulated medical products. 

Subcomponents of the Sentinel System include: ARIA, PRISM, BloodSCAN and STAT. 

 

Signal Detection: An approach that uses statistical methods to identify medical product–adverse 

outcome associations that may be safety signals; no particular medical produce exposure or adverse 

outcome is pre-specified.  

 

Signal Evaluation: Consists of the implementation of a full epidemiological analysis to more thoroughly 

evaluate the causal relationship between exposure to the medical product and the adverse outcome of 

interest. 

 

Signal Refinement: A process by which an identified potential safety signal is further investigated to 

determine whether evidence exists to support a relationship between the medical product exposure 

and the outcome.  

Surveillance of Tissues and Advanced Therapeutics (STAT): A subcomponent of the CBER Sentinel 
Program focusing on surveillance and recipient safety evaluation of human cell-, gene-, tissue-based 
products, other advanced therapies, and antivenins. 
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Appendix B: Overview of Signal Detection Techniques 
 

Method Description Study Design 
Compatibility 

Key Parameters 
and Assumptions 

Data Resources 
and Capabilities 

Required 

Strengths Limitations 

TreeScan: 
Tree-based 
Poisson Scan 
Statistic 

Statistical signal detection approach 
grounded in well-known epidemiologic 
designs and scan statistics. Unconditional 
approaches require user-specified values 
for the null hypothesis whereas the null 
hypothesis is derived (conditioned) on 
the incoming data in conditional 
approaches. 

Stratified Cohort 
Designs with 
Reference Cohort. 

Outcomes are 
Poisson-distributed. 
 
Parameters include 
stratified background 
rates for all nodes in 
the tree. 

Summary data from 
multiple sites/ 
databases using a 
distributed 
database approach 
can be used to 
perform a TreeScan 
analysis. Rapid 
iteration is not 
required. 

Takes advantage of 
hierarchical nature of 
clinical concepts in the 
form of a tree structure. 
 
Investigator does not 
need to understand how 
outcome data is coded. 

Formal control for 
multiple hypothesis 
testing and overall Type 
I error. 

Most of the limitations 
are inherent to the 
epidemiologic design 
that supports the tree-
based scan statistic. 
 
Parameters are set for 
ALL outcomes in the 
tree (~8000+) and 
therefore are not 
customizable by 
outcome. 

 
 

TreeScan: 
Tree-based 
Bernoulli 
Scan 
Statistic 

Self-Controlled 
Designs. 
 
Fixed Match Ratio 
Designs. 

Outcomes are 
distributed per the 
user-specified 
matching ratio or 
based on the dataset. 
 
Parameters include 
the probability of 
occurring in the 
treatment group/risk 
window. 

TreeScan: 
Tree-
temporal 
Scan 
Statistic 

Self-Controlled 
Designs. 

Outcomes are 
distributed according 
to the time 
contributed or based 
on the incoming 
dataset. 
 
Parameters include 
various Scanning 
Window Parameters. 

Large-Scale 
Comparative 
Effectiveness 

Analytical approach used to 
systematically apply best practices for 
observational studies at large-scale using 

Any observational 
study design can 
be used. To date, 

A key parameter is 
the scope of the 
analysis (e.g. limit to 

Requires outcomes 
to be defined in the 
network of 

Full study diagnostics, 
such as propensity score 
overlap, covariate 

Requires adjustment for 
multiple testing when 
interpreting results in 
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Studies with 
Propensity 
Models and 
Empirical 
Calibration 
 

propensity score stratification, expert-
crafted outcome definitions, and 
multiple sensitivity analyses to answer 
hundreds of thousands of research 
questions in a distributed network of 
databases. Negative and positive controls 
(i.e. research questions with known 
answers) are used to evaluate residual 
bias, and empirical calibration of p-values 
and confidence intervals. 

this approach has 
been applied to 
new-user cohort 
designs to mimic 
targeted 
randomized trials. 

one exposure, all 
exposures in a class, 
or all treatments for a 
particular indication). 
 
When using a new-
user cohort design it 
assumes some 
comparator exposure 
exists with sufficient 
overlap in population 
characteristics. 

databases, as well 
as a set of negative 
control exposure-
outcome pairs. 

balance, sensitivity 
analyses results, and 
empirical performance 
on negative and positive 
controls are readily 
available to interpret 
potential findings. 

the context of signal 
detection. 

Self-
Controlled 
Designs with 
Temporal 
Pattern 
Discovery  

The self-controlled cohort analysis within 
the Temporal Pattern Discovery 
framework compares the observed-to-
expected ratio of medical events during 
post-exposure risk window(s) with those 
in a set of distinct control windows in the 
same patients. It utilizes an external 
control group to account for systematic 
differences between the different 
windows, thus combining within- and 
between-patient confounder adjustment 
in a single measure. 

Cohort, 
New User 

Choice of risk 
window(s) (e.g. days 
1-30, days 1-90). 
 
Choice of control 
window(s) (e.g. day of 
event, 1-30 days 
before start of 
treatment, and 180 to 
540 days before start 
of treatment). 
 
Choice of external 
control group 
(default: prescriptions 
of any drug in the 
database as with 
disproportionality 
analysis for 
spontaneous reports). 

Data on all patients 
exposed to the 
drug(s) of interest 
plus corresponding 
data for an external 
control group used 
for calibration. 

Self-controlled analysis 
adjusts for time-
constant confounders 
and provides a 
reasonably versatile and 
general approach to 
statistical signal 
detection in longitudinal 
observational data. 
 
Use of external control 
group offers calibration 
for systematic 
differences between the 
different windows (e.g. 
different lengths, 
censoring, overall 
differences in likelihood 
of certain events such as 
those that are 
sometimes fatal and at 
different points in time 
relative to the start of 
treatment). 
 

Not suitable for fatal 
events, because of being 
self-controlled (not ideal 
for events with high 
fatality, although 
calibration by external 
control group may make 
it more robust to this 
than other self-
controlled designs). 
Vulnerable to time-
varying confounding and 
especially to protopathic 
biases. 
 
Use of generic analysis 
strategy makes manual 
review of findings a 
necessity – emphasis on 
reducing false positive 
findings for example 
through use of multiple 
control windows will 
increase risk of false 
negatives instead. 
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Leveraging Gamma-
Poisson shrinkage with a 
fixed G(½, ½) 
distribution, this 
technique offers a 
simple, but powerful 
approach to reduce the 
risk of spurious 
associations from both 
random variability and 
artificially low expected 
values (on which we 
condition). 

Bayesian 
Shrinkage 
Techniques 
and Meta-
Analyses 
 

These techniques reduce variation by 
combining multiple examples to allow 
borrowing strength after estimating a 
prior distribution of average effects. 

Effective when 
study design 
seeks estimates 
for many parallel 
problems. 

Assumes similarity of 
effects or sources of 
variation across 
multiple problems. 

Needs large 
databases to draw 
on multiple 
estimations and 
measure variance 
components. 

Often provides accurate 
adjustments for multiple 
comparisons 
conundrums that are 
especially problematic 
for safety surveillance 
analyses. 

Results can mislead if 
individual problems are 
black swan outliers that 
don’t follow the general 
pattern of most other 
examples. 
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Appendix C: List of Current Sentinel Data Partners**  

 Aetna Informatics 
 Blue Cross Blue Shield of Massachusetts 
 Department of Population Health Sciences, Duke University School of 

Medicine 
 HealthCore, Inc. Government & Academic Research 
 Harvard Pilgrim Health Care Institute 
 HealthPartners Institute 
 Humana, Inc., Comprehensive Health Insights 
 Marshfield Clinic Research Institute 
 Meyers Primary Care Institute, a joint endeavor of Fallon Community 

Health Plan 
 Hospital Corporation of America 
 Kaiser Permanente Colorado Institute for Health Research 
 Kaiser Permanente Center for Health Research Hawaii 
 Kaiser Foundation Health Plan of the Mid-Atlantic States, Inc. 
 Kaiser Permanente Northern California, Division of Research 
 Kaiser Permanente Northwest Center for Health Research 
 Kaiser Permanente Washington Health Research Institute 
 Optum 
 Vanderbilt University School of Medicine, Department of Health Policy 

 
 
 
 
 
 
 
 
 
 

                                                           
** List adapted from: https://www.sentinelinitiative.org/collaborators. 

http://www.aetna.com/
http://www.bluecrossma.com/
https://populationhealth.duke.edu/
https://populationhealth.duke.edu/
http://www.healthcore.com/
http://www.populationmedicine.org/
http://www.hprf.org/
http://www.marshfieldresearch.org/
http://www.umassmed.edu/meyers/
http://www.umassmed.edu/meyers/
http://hcahealthcare.com/
http://www.kpco-ihr.org/
http://www.kpinhawaii.org/
http://mapri.kaiserpermanente.org/
http://thrive.kaiserpermanente.org/care-near-you/northern-california/
http://thrive.kaiserpermanente.org/care-near-northwest
http://www.kpwashingtonresearch.org/
https://www.optum.com/solutions/life-sciences/answer-research/epidemiology-research.html
http://medschool.vanderbilt.edu/
https://www.sentinelinitiative.org/collaborators
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