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Data Mining

Simultaneous evaluation of multiple
drug / adverse event pairs.




Common goals of data mining methods

® Find unknown adverse reactions, if they exist

* Few false positives, or else, easily explained false
positives

o Sufficient power to detect rare adverse reactions
* (Find known adverse reactions, if any)
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Data Mining Design Features
Data mining methods have different features.

These can be combined freely to create hybrid
approaches.

So, approach it like ordering ice cream, picking
your favorite cone, ice cream flavors and

toppings.
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Key Feature: Data Source

Spontaneous reports (e.g. AERS)
Clinical trials

Disease registries
Electronic health records

Insurance claims data




Key Feature: Risk Window

* Risk window identical to exposure period

* One or more pre-specified risk window, such
as 1-14 days after initial exposure

* Temporal scan, simultaneously evaluating
hundreds of potential risk windows




Key Feature: Comparison Group

All individuals

Healthy individuals —t.l

Users of all other drugs i

Users of a similar drug
Self-controls, pre-exposure control window

Self-controls, post-exposure control windows
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Key Feature: Covariate Adjustment

None
Age, gender, calendar time, geography, etc
Concomitant exposures

Propensity score matching




—

Key Feature: Outcome Granularity

® Use collection of very specific diagnoses, such as
ICD-9 codes (e.g. acute liver failure).

* Use smaller collection of more general groups of
related diagnoses (e.g. liver disease)

* Simultaneously use both of the above, plus
intermediate levels
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Key Feature: Multiple Testing Adjustment

* No adjustment
* Informal adjustment, such as lower 95% CI >2
* Formal analytical Bonferroni type adjustment

* Formal Monte Carlo adjustment, with random
data generated under the null hypothes1s




Key Feature: Effect Estimates

e Relative Risk / Odds Ratio
e Empirical Bayes Shrinkage Estimates
o Attributable Risk / Risk Difference
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Key Feature: Frequency

* One single look at the data

e Multiple looks over time, as more data
accrues

e Real-time safety surveillance
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Key Feature: Size and Type of Net

e One drug, thousands of disease outcomes
* One disease, thousands of drugs

e Thousands of drugs and thousands of
outcomes

e Specific population, such as pregnant women
and birth defects ' A

e Drug-drug interactions
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Sentinel’

Signal Detection using TreeScan

Judith C. Maro

Harvard Medical School and Harvard Pilgrim Health Care
Institute, Boston, MA



Tree-Based Scan Statistics are Enabled by:

* A signal detection /
data-mining method

* Scans electronic health outcome
data that are grouped into
hierarchical tree structures

* Automatically adjusts for
multiple hypothesis testing

http://www.treescan.org

Sentinel’
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Data-Mining Designs with Trees Sentinel’
" Exposure-Oriented - 1 Exposure: N Qutcomes

@s Multi-Level Clinical Classification System (MLCCS) where N=~8000

" Qutcome-Oriented - M Exposures: 1 Outcome

— Uses Medi-Span Therapeutic Classification System (Drug Tree) where
M=300,000+

= Future - M Exposures: N Outcomes



Data Arranged in a Tree Structure Sentinel’

Diseases of the Nerve
and Sense Organs

|
v v v v

System Organ Class
Gastrointestinal disorders

Central Nervous Hereditary-and . Epilepsy: High Level Group Term
: degenerative nervous Paralysis ; . . .

System Infection s convulsions Gastrointestinal signs and

system condition _
symptoms
High Level Term
Epilepsy Convulsions Nausea and vomiting

symptoms

v

Preferred Term
Convulsions

Nausea
- Lowest Level Term
Convulsions Febrile convulsions N febrik(::z c;;rgr?ﬁl(sions Posszrzezl:’er;atlc Other convulsions ,
ICD-9-CM 780.3 ICD-9-CM 780.31 ICD-9-CM 780.39 Feeling queasy

ICD-9-CM 780.32 ICD-9-CM 780.33
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Study Designs Compatible with TreeScan Analytics Sentinel’

Poisson Model Bernoulli Model Tree-Temporal Model

Unconditional Conditional Unconditional Conditional Unconditional Conditional

Self-
Controlled X X X X
Design

Propensity

Score or

other Fixed X
Ratio Match

Design

Stratified
Cohort X X
Design

(7]
o
20
(7]
Q
(]
>
©
-
o’
(V]

Unconditional means the null hypothesis relies on an external input about the expected outcomes.
Conditional means the null hypothesis is determined by the characteristics of the incoming data set.



How has TreeScan been evaluated thus far? Sentinel)

Simulated Datasets Empiric Assessments
= Advantages = Advantages
— Artificially inject “excess risk” of variable — Empiric testing with real data
specific sizes — Allows assessment of method under real life
— Allows quantitative assessment of method conditions
-under “experimental conditions” where “truth — Can be effective method to assess performance
is known if test case is well characterized
= Limitations = Limitations
— Simulated data has a range of realistic — Can be challenging to interpret unexpected
representations. Early simulations are quite results
artificial

— Need additional information to investigate
unexpected results



Self-Controlled Designs (Tree-Temporal)

Kull

Sentinel’
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Propensity Score Matched Designs

Epidemiology. 29(6):895-903, NOV 2018

DOI: 101097/ EDE.0000000000000907, PMID: 30074538
Issn Print: 1044-3983

Publication Date: 2018/11/01
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Data Mii
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Propens Development and Evaluation of a Global
Statisti¢ Propensity Score for Data Mining with Tree-Based
snineyv.wang 1, DCaN Statistics

Gagne; Elisabetta
Sebastian Schnee| Project Title

+ Author Informat
Date Posted

Status

Deliverables

Development and Evaluation of a Global Propensity Score for Data Mining with Tree-
Based Scan Statistics

Friday, August 10, 2018

In progress

Development and Evaluation of a Global Propensity Score for Data Mining with Tree-
Based Scan Statistics: Protocol
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Stratified Cohort Designs with Referent Cohort Sentinel’
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Strengths of TreeScan Sentinel

1.

Takes advantage of hierarchical nature of clinical concepts in the form of a
tree structure.

Investigator does not need to understand how particular outcomes are coded
(i.e., can be indifferent to the granularity of the outcome data)

Formal control for multiple hypothesis testing (Overall Type 1 error)
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Limitations of TreeScan Sentinel)

1.

All outcomes are treated identically across the tree (8000+) regardless of
their time of onset, severity, etc.

Complex outcomes (algorithms such as 2 codes within X days of each other)
are not tested with TreeScan.

Individual study designs have limitations depending on the design chosen.
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Bayesian Shrinkage and Meta-Analysis:
Possible Applications to Sentinel

William DuMouchel, PhD
Chief Statistical Scientist
Oracle Health Sciences
Miami, FL, USA
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Bayesian Shrinkage Techniques and Meta-Analysis

Description and Scenario

These techniques reduce variation by combining multiple examples to
allow borrowing strength after estimating a prior distribution of
average effects

They are most effective when the study design seeks estimates for
many parallel problems

A Bayesian model assumes similarity of effects or sources of variation
across the multiple problems

OR Cl_e Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |



Data Requirements, Strengths and Limitations

These methods work best with large databases to be able to draw on multiple
estimations and measure variance components

A primary strength is that they often provide accurate adjustments for

multiple comparisons conundrums that are especially vexing for safety
analyses

[Accomplished by estimation of assumed prior effect variances across
examples]

Results can mislead if individual problems are black swan outliers that don’t
follow the general pattern of most other examples.

OR Cl_e Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |



Shrinking Safety Signals Toward Class Effects

* Observational Database for Drug Adverse Reactions
— N = Counts of Drug-Event Combinations (DECs)

— E = Expected Counts Based on some No-Effect Model

* Null-Hypothesis Models for Expected Counts
— Adjustment for Age and Gender and other Covariates
— Adjustment for Concomitant Drugs (Large Scale Regression)
— Longitudinal exposure models
* Two-way Shrinkage Model
— Assume analysis of prespecified set of DECs
— A class of drugs for the same indication
— A set of medically similar adverse effects

OR Cl_e 106 Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |



Rationale for Two-Way Shrinkage

* Similar Drugs may have a Class Effect on each PT

* Similar Mechanisms Affect Medically Related Events
— PTs Close in the MedDRA Hierarchy May Have Common Causes

* There Are Probably Specific Drug-Event Associations
— But We Have Noisy Measurements for Rare Combinations
— Estimate Deviations from Overall Drug and Event Patterns

* Decompose Associations: Drug Effect x PT Effect x Residual (Interaction) Effect
— Prior Distributions Can Shrink All 3 Types of Effects Toward 1
— High-Variance Estimates Will Get Shrunk the Most

* DuMouchel W, Harris JE (1983) JASA 78:293-315

— Fits Similar Model to a Collection of Environmental Dose-Response Slope Estimates

OR Cl_e 107 Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |



Antipsychotics and Movement Disorders in FAERS

* Drugs—J = 6 Antipsychotics

— Aripiprazole Haloperidol Olanzapine
Quetiapine Risperidone Ziprasidone

* Events—K = 30 PTs for Movement Disorders

— Selected as the 30 PTs Related to Movement Disorder that Had the Greatest
Total No. of Reports across all 6 Drugs

* Counts N, and Expected Counts E;, [Drug j, Event k]

* Poisson Regression Estimates Average Drug and PT Trends

— N;, ~ Poisson(E;, exp{o; + B,}) [Assume one 3, = 0 to normalize]

* Shrink Observed N, /E; Toward the Overall Regression Trends

OR Cl_e 108 Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |



Ratios N/JE  [E from RGPS]

Tardive dyskinesia
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Extrapyramidal disorder =
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Regression Fit to N/E -

Tardive dyskinesia
Buccoglossal syndrorm=
Exdrapyramidal disorder
Heuroleptic malignant synn::lrn::ur‘ne
Cogwheel rigidity
Muscle rigidity
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Akathisia
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Tourette’s disorder
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Tremor
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Muscle spasms
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Two-Way Shrinkage of N/E

Tardive dyskinesia
Buccoglossal syndrarme
Extrapyramidal disaorder S
FReuroleptic malignant syndrarmea
Cogwheeal rigidity
Muscle rigidity

Cyystania

Akathisia

Toarticallis

Cvskinesia

Tourette"s dizsorder
Bradykinesia

AkKinesia
COrromandibular dystonia
Crculogyric crisis
Blepharaospasm
Frotrusion tocnguea
Steraotyvpy

Srimacing

Cwv=arthria

Hypokinesia

Restless legs syndromea
Movement disorder
Choreocathetosis
Chorea

Tremor

Hiccups

Myoclonus

Muscle spasms

Ataxia

o 14 2 = 5 15 50

Quetiapine
Olanzapine
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Shrinkage Model Across Different Data Sources

* Let Ny, and E, Denote Observed and Expected Counts
— Database d, Drug j and Event k

* Agik >0
— “True” disproportionality of drug j and event k in database d
— Ny ~ Poisson(E g Agy)
* Assume Ay = ag; X By X vy, Where
—a,g; ~ Gamma(A, A) so that each oy has prior mean equal to 1 and prior variance 1/A
— By~ Gamma(B, B)
— ¥ ~ Gamma(C, C)
* Estimates of A, B, C and A, Provide a Meta-Analysis of the Safety Situation

—Several other models for A, may be appropriate

OR Cl_e Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |



Large-Scale Evidence Generation
and Evaluation in a Network of
Databases (LEGEND)

OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS

Martijn Schuemie
Janssen Research and Development — Global Epidemiology
UCLA - Biostatistics




Observational Data

Can be used to estimate
e Counts: how often does outcome occur in exposed?
e Associations: is exposure associated with greater counts?

e Causal effects: does an exposure increase the risk of an
outcome?

Duke-FDA Public Workshop — Signal Detection 116



Our goal: Signal = Causal effect

“Hypothesis free”
actually means
“Many hypotheses”

For example:
* a new drug — ‘all’ outcomes
e aclass of drugs — class of outcomes

Duke-FDA Public Workshop — Signal Detection 117



Estimating causal effects

Many methods exist, e.g.

* New-user cohort method using propensity score adjustment
e Self-Controlled Case Series (SCCS)

* Case-control

* Case-crossover

* Self-controlled cohort

Duke-FDA Public Workshop — Signal Detection
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Best practice for estimating causal
effects in observational data

* Prespecify

* Transparency: protocol + source code
* Proper outcome definitions

* Sensitivity analyses

e Study diagnostics

 Multiple databases

Cardiovascular, Bleeding, and Mortality Risks in Elderly
Medicare Patients Treated With Dabigatran or Warfarin for
Nonvalvular Atrial Fibrillation

David J. Graham, MD, MPH; Marsha E. Reichman, PhD; Michael Wernecke, BA;
Rongmei Zhang, PhD; Mary Ross Southworth, PharmD: Mark Levenson, PhD;
Ting-Chang Sheu. MPH: Katrina Mott. MHS:; Margie R. Goulding. PhD:
Monika Houstoun, PharmD, MPH: Thomas E. MaCurdy, PhD: Chris Worrall, BS:
Jeffrey A. Kelman, MD, MMSc

Background—The comparative safety of dabigatran versus warfarin for treatment of nonvalvular atrial fibrillation in general

practice settings has not been established.
Duke-FDA Public Workshof Me_rh.o.ds and Rffs:rlrs—We form.ed new-user cohorts of propensity' scm'e.—ma_tched elderly patients enrolled in Medicare who 119
initiated dabigatran or warfarin for treatment of nonvalvular atrial fibrillation between October 2010 and December 2012.




LARGE-scALE EvIDENCE (GENERATION AND EvAaLUATION IN A NETWORK OF DATABASES

Hypertension treatments

* 10,278 comparisons between drugs, classes, and
combinations of these

* 58 outcomes of interest
587,020 research questions
Methods

 New-user cohort design

e Large-scale propensity scores
* Proper outcome definitions

* 9 databases across the globe

Duke-FDA Public Workshop — Signal Detection
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LEGEND results
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LEGEND results
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Each analysis has all the content you should expect in

Angioedema risk in new-users of Lisinopril versus
Hydrochlorothiazide for hypertension in the CCAE

database

Martijn J. Schuemis ™", Patrick B. Byan™ "', Seng Chan ¥
Marc A Suchard* "
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tnehsde Table{talesubgroups] thut reports e estisates sop
sately for children (age < 18, the chdorly {age > 65), fn
paun.b. preguant womes, patients with hn:p..\ inspabrme
and patiests with renal using P!

Supgperting Information

Here we enamerate the guiding priscipies of LEGEND
peowide lking detatls oo study cohorts and desin.

LEGEND principles.

L. Evidence will be gencrabed at lings-scalo.

2. Dissemination of the evidece will nat depend an
istimated cifocts.

3. Evidonce will be gencrated by consistently applyls
spstematic approach acnss all research questions.

4. Evidence will be gescrated using & pre-spocificd ana

design.

Evidence will ho generated using apen saarco safty

that is frecly avatlable to all

Envidence generation proces will be auplrically emla

by including cantral tesearch questious where the

effert sloe s known.

Envtddensce will be generated st best-practices.

LEGENE will not. be wsed to eviluate nsethods.

Exviddesce will be updated on u regulur basis

 d

o

Fesidual systematic esror. o the absense of biss, we expe
855, of megative and positive conteol estimate 955 confiden
intervals to inchule their presamed HR. In the cass of nogatl
comtrels. the prosumed HR = 1. Figure § desribes the negatl
and pesdtive control estinsates usdar the on-trostsest with §
stratification destgn. Before calibration, negative and positl
eostrols demnonstrate poor coverage. After callbiration, coutro
demansiTate poar coverage.

E

Mo patient-lovel data will be shared [

wetwork, only sggregated data.

Ztudy cohorts. Please  see the LEGEND hyperten
Study protece] {hitps:igithub.comOHD 5l Legend treeima
Documents) for complote specification. of the lsinopel,
drochlorothinside and angioedema coborts using AT
[t mww.ohoisi crgiwel/atias ).

Hegative controls. W sderted segative controls using
coss similar to that oathined by Viss o al (307). We
eomstriet a bist of all conditions that satisfy the folkoy
eriterta with respect to all dngg exposares i the LEGE
hypertensn studv:

+ Mo Medbin abstract whers the MoSH terms sagge
drug-candition assoclation (Winseuburg o al. 2015
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Different use cases of LEGEND results

* Current use: Hypothesis testing
question =2 check LEGEND results
One hypothesis, no multiple testing.

e “Signal detection”
e.g. rank-order by lower bound of confidence interval
This requires adjustment for multiple testing!

Same goal: provide best estimate
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Estimates for 200 negative controls
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To evaluate performance, we must decide on the
evaluation metrics

* Coverage of the 95% confidence interval
 Type 1 and 2 errors (sensitivity and specificity)
 AUC (Area Under the Receiver Operator Curve)
e MSE (Mean Squared Error)

* Precision

Choice of cutoff (e.g. p=0.05)
Empirical calibration?
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Takeaway points

* Goal: to reliably estimate causal effects

whether one hypothesis at a time or many hypotheses at a time ("signal
detection”)

* Apply best practices, even at large scale
— Confounding adjustment
— Proper outcome definitions
— Sensitivity analyses
— Study diagnostics
— Multiple databases
* Always measure operating characteristics using
— Negative and positive controls
— Multiple metrics
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Temporal pattern discovery for signal detection
in electronic healthcare data
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Confirmatory study




Exploratory study




Norén et al. I?ata Mining and
Temporal pattern discovery
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Norén et al.
o o Drug Safety, 2013
Self-control calibrated by active comparator
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Norén et al
Simple statistical shrinkage
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Norén et al.
Multiple risk and comparison windows
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OMOP results (2012 study)
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Prospective screening study

Cederholm et al.
Drug Safety, 2015
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Abstract

Background Phamacovigilance signal detection largely

relies on individual case reports, but longitudinal health

data are being explored as complementary information

sources. Rescarch to date has focused on the ahility of
Je | al methods to distinguish established adverse

ated adverse events

P
drug reactions (ADRs) from unre
Objective  The aim of this study was to evaluate a process for
structured clinical and epidemiological assessment of tempo-
rally associated drugs and medical events in electronic medicd
records.

Methods  Pairs of drugs and medical events were selected for
review on the basis of their temporal associaion according to a
calibmated selfcontrolled cohort analysis in The Health
Improvement Network. Six assessors trained in pharmacovigi-
lnce andbor epidemiology evaluated seven drugs each, with up
to0 20 madicd events per drug. A pre-spedfied questionnaire

S. Cadesholm - G Hill - T. Bergvall - K. Star
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considered aspects related 1o the nature of the temporal patiern,
demogmphic feaures of the cohort. concomitmt medicines,
carlier signs and symptoms, and possible confounding by
underlying disease. This informed a cdassification of drug-event
pairs as known ADRs, menting further evaluation, or dismissed.
Results  Thenumber of temporally associated medical events
perdmg ranged from 1110 307 (median 50) for the 42 selected
drugs. Out of the 509 relevant drug—event combinations sub-
jected to the assessment, 127(25 %) were classified as known
ADRs, Ninty-one (24 %) of the remaining pairs were clas-
sified as potential signals meriting further evaluation and 291
(76 %) were dismissed. Suggestive temporl pattems and lack
of clear alternative explanations were the most common rea-
sons that drug-event pairs were classified as meriting further
evauation. Earlier signs and symptoms and confounding by
the underlying disease were the most common reasons that
drug-event pairs were dismissed

Conclusions Exploratory analysis of electronic medical
reconds can detect important potential safety signals.
However, effective signal detection requires that statistical
signal detection be combined with clinical and epidemio-
logical review to achieve an acceptable false positive rate,

Exploratory analysis of electronic medical records
can detect important potential safety signals,

To achieve an scceptable fulse positive rate,
statistical signal detection should be combined with
clinical and epidemiological review.

Such review also requires 1 deep understanding of the
analytical methods employed, and insight into data
collection and medical practice in the setting at hand
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Cederholm et al.
Prospective screening study
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Cederholm et al.

Confounding by underlying disease Dot Safity, 2015
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