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Optum ‘Data Factory’ High Level Overview
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Data sources

Epic
Cerner
Allscripts
Athena
Next Gen
Centricity
eClinicalWorks
Meditech
McKesson
Etc.

837P (doctor)
837i  (institutional)
ADT feeds
HIE feeds
Custom files

Commercial
EHP
BPCI
MSSP
Etc.
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Stage environment 
for bulk load

Specs 
and ETL

Provenance
Find data and determine strategy 
for incorporation
Update/run ETL

Normalization
Create common values set (e.g., 
weight converted from lbs. to kg.)

Mapping
Data fields mapped to common 
domains (e.g., local gender M/F, 
1/0)

Validation
Normalized data validated 
against quality standards

Central data repository

Centralized database
Common normalized data structure 

for all clients
Core concept mapping

Natural language 
processing

Aggregation
Patient ID merging

Provider ID merging
Algorithms

CDR

Ongoing quality checks



High Level Overview of Optum Processes and Technologies for 
Data Extraction

Data Acquisition Data load and normalization into 
proprietary data model Quality Analytics

• Create secure data acquisition 
pipeline- through VPN or secured 
file transfer process (encrypted)

• Ensure data flowing daily
• Define expected standard file 

formats based on data type (HL7, 
Claims, etc.) 

• Reusable data extraction logic 
based on experience with 
multiple EMR/data warehouse 
structures

© 2019 Optum, Inc. All rights reserved. Confidential property of Optum. Do not distribute or reproduce without express permission from Optum. 7



© 2019 Optum, Inc. All rights reserved. Confidential property of Optum. Do not distribute or reproduce without express permission from Optum.

Optum Processes and Technologies for Data Extraction

• Optum Analytics provides services under a Business Associate Agreement to our 
customers

• Our Customers provide access to their data to support certain Health Care Operations  
- Accurate and current data critical for Care Coordination activities
- Work together to ensure access and accuracy 

8

Ensuring extraction of the most recent data from various data sources…



Optum Processes and Technologies for Data Curation
Data Acquisition Data load and normalization into 

proprietary data model Quality Analytics

• Leverage industry standards 
(Code sets) to normalize data as 
a part of Extraction 
Transformation Load process

• Use Machine learning techniques 
to normalize free-text data sets 
from text fields or notes

• Subject Matter Experts used for 
Labs and Medication Mapping 

• Internal Tools and Machine 
Learning processes developed to 
ensure consistency in data 
across all customers EMRs 
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Optum Processes and Technologies for Data Curation
Provenance Identification
• Analyze provider data stores (Multiple sources)
• Locate candidate sources in the raw data
• Characterize the data:

- Variety of sources
- Data type
- Extent of population
- Data quality

• If multiple data sources for one element, compare data and specify provenance 
cascade

• Document provenance for future reference and verification review 
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Optum Processes and Technologies for Data Curation
Normalization – highly dependent on data type
• Structured Data 

Standard Terminology – use crosswalks
Custom codes – use regular expressions, semantic logic, machine learning techniques

• Unstructured Data –
requires extensive business requirement definition- NLP

Accuracy Verification during Mapping 
• Structural testing concerns the format of data
• Semantic testing concerns the meaning of data 
• Referential testing concerns the relationship between data
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Transforming Local Lab Result and Units to Normalized Values

12

Local Name Local
Result Normal Range Local

Units Mapped Name Mapped Unit Normalized
Value

Prostate specific 
antigen 0.33 (null) ng/ml Prostate Specific Antigen ng/ml 0.33

Albumin, serum 3630 3848-5304 mg/dl Albumin g/dl 3.63

Triglyceride 68 See lab report (no units) Triglycerides (TG) mg/dl 68

C-reactive protein, 
serum 0.12 See lab report mg/dl C-reactive protein (CRP) mg/L 1.2

Thyroid stimulating 
hormone 0.8 0.5-6.0 miu/l Thyroid stimulating 

hormone (TSH) uu/ml 0.8



High Level Overview of Optum Processes and Technologies for 
Data Extraction

Data Acquisition Data load and normalization into 
proprietary data model Quality Analytics

• Source to Target Mapping for 
new data sources

• Analytical algorithms to validate 
normalized data sets using 
automated and semi-automated 
methods

• Develop data integrity checking 
processes run during initiation 
and each monthly data refresh 
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Data Quality Verification: Using Automated Analytics
Volumetric Analysis
• High Level Volumetric: examine trends over time for each table to identify any gaps in the 

data
• Mid Level Volumetric: examine trends over time of particular items of interest overall and 

by source of data
− Volumes for specific lab tests, medication class

Linkage Reports: examine “joining” rates between the various tables to ensure consistency 
in patient IDs and encounter IDs (where available) across the various data sources.
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C O TA H E A LT H C A R E . C O M

COTA’s Approach to Data Curation
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COTA transforms complex clinical data into Real World Data

Aggregate Clinical, Genomic 
and Financial Data Across 
Cota’s Provider Network

1
Process Structured And 

Unstructured Data Via Data 
Enrichment Platform

2
Stratify RWD By CNA To
Enable Comparison of 

“Clinically Identical” Patients

3
Analytics to Drive

Insights Across The
Healthcare Ecosystem

4

Providers, Payers

Life Sciences

Research

Technology 
Enabled

Human 
Driven

High Quality Real World 
Dataset
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The Journey to Make COTA RWE
COTA RWE is derived via in-house technology that enables the collection and expression of 
comprehensive patient data supported by source attribution.

1 2 5

Data Acquisition 

and Intake

3 4

Abstraction Transformation
Analytics and 

Reporting
Products

...breast cancer...

triple negative

...LVI...

ER -

PR -

HER2 -
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Event-Driven Patient Timeline
COTA’s flexible model is designed to accommodate multiple similar facts over the entire patient timeline.

PATIENT 
DIAGNOSED LAST CHECK-IN

Date of 
Diagnosis

and
Cancer Type

Stage Treatment 
Start and 

End Dates

Toxicities Current Status

ECOGLabs

Real World 

Outcomes

Comorbidities Molecular 

Markers
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Data Source Examples File Type

Tabular data
Data exported from one of the many 
sources in the provider’s system or claims 
from Payer.

Tumor registry, utilization 
reports, BI reports, 
and claims

Character-delimited files
(CSV)

EHR media
All files are scanned or created by the 
provider’s system.

Surgical Pathology Report, 
Visit notes

PDF, JPEG, TIFF

Programmatic EHR messages
Data generated in digital text format from 
the provider’s system.

ORU, ADTs, MDMs, RAS HL7, CCD, FHIR

Data Acquisition and Intake
Abstraction begins when new documents and patient data are received.
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MRN 123, ER NEGATIVE

MRN 123, HER2 NEGATIVE

The Source
Pathology Report

MRN 123, DISEASE

Abstraction
Clinical experts use standard and controlled terminology to turn unstructured information to 
structured data, which is then subject to robust review, rules, and quality assurance.

... breast cancer ...

... triple negative ...

MRN 123, PR NEGATIVE

... LVI ... MRN 123, LYMPHOVASCULAR 
INVASION PRESENT

Patient Facts
Interpreted Values
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Abstraction
Structured and semi-structured sources are leveraged wherever possible, and augment manual 
abstraction, process optimization, and operational intelligence.

CSV

Custom 
Mapping 
Scripts

MRN 123, FACT 2

MRN 123, FACT 3

MRN 456, FACT 1

Proprietary 
scripts using 

Fact 
API

The Team
Engineer + Clinical Abstractor 

The Source
Tumor Registry

The Output
Facts

MRN 123, FACT 1

MRN 456, FACT 2
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Medical Calculations Proprietary 
Calculations Data Tables

• Staging
• Time Deltas and events for Kaplan-Meier 
• Prognostic scoring systems

• CNA assignment
• PHI scrubbing
• Progression

• Staging
• Molecular testing
• Labs

The ETL layer handles all medical calculations, roll-ups, and normalizations, and generates data that 
powers COTA products and benchmarks. 

Transformation
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● Quality control at the point of data entry:
○ Data validation (restricted ranges, realistic dates, control lists, no free text)

○ Careful management of external data sources not entered by humans (SLAs, 
mapping, testing, data validation)

● Upfront abstractor testing against gold standard
● Ongoing abstractor monitoring using randomized double-blind 

abstraction and IRR measurement
● Programmatic checks for improbable scenarios

Quality Assurance Overview
A multi-phase approach applying automated and human-driven activities is required to optimize and monitor 
data quality.
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● Much of “what matters” in oncology is found only in complex physician 
narratives. NLP accuracy today is inadequate for these scenarios.

● Decisions regarding individual data elements are always made by humans 
with appropriate training.

● We rely on an increasingly sophisticated “suggestion engine” to improve 
human efficiency and accuracy.

● As accuracy improves, the suggestion engine will be compared against 
humans and IRR calculated.

● For individual data element/source combinations that prove superior to 
human abstractors, we can consider replacing human abstractors in the 
future.

The Role of Technology
Natural Language Processing (NLP) has great potential to help, but we are concerned about accuracy.
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Unpacking Real-World Data 
Curation: Principles and Best 

Practices to Support 
Transparency and Quality

Patrick Ryan, PhD

Janssen Research and Development

Columbia University Medical Center



The journey to real-world evidence

Patient-level 
data in source 

system/schema

Reliable 
evidence

One-time Repeated



Desired attributes for reliable evidence

Desired 
attribute

Question Researcher Data Analysis Result

Repeatable Identical Identical Identical Identical = Identical

Reproducible Identical Different Identical Identical = Identical

Replicable Identical Same or 
different

Similar Identical = Similar

Generalizable Identical Same or 
different

Different Identical = Similar

Robust Identical Same or 
different

Same or 
different

Different = Similar

Calibrated Similar 
(controls)

Identical Identical Identical = Statistically 
consistent



Minimum requirements to achieve reproducibility

Patient-level 
data in source 

system/schema

Reliable 
evidence
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• Complete documented specification that fully describes all 
data manipulations and statistical procedures

• Original source data, no staged intermediaries
• Full analysis code that executes end-to-end (from source to 

results) without manual intervention

One-time Repeated

Desired 
attribute

Question Researcher Data Analysis Result

Reproducible Identical Different Identical Identical = Identical



How a common data model + common analytics can 
support reproducibility

Patient-level 
data in source 

system/schema

Reliable 
evidence

B

D

F

H

J

K

M

I

C

E

L

G

A

• Use of common data model splits the journey into two 
segments:  1) data standardization, 2) analysis execution

• ETL specification and source code can be developed and 
evaluated separately from analysis design

• CDM creates opportunity for re-use of data step and 
analysis step

One-time Repeated

Desired 
attribute

Question Researcher Data Analysis Result

Reproducible Identical Different Identical Identical = Identical

Patient-
level data 

in CDM



ETL: Real world scenario

PharMetrics Plus 
CLAIMS

pat_id claimno from_dt to_dt diagprc_ind Diag_admit diag1

05917921689 IPA333393946 1/5/2006 1/5/2006 1 41071 41071

LRx/Dx
MEDICAL_CLAIMS

md_clm_id ims_pat_nbr dt_of_service rxer_id diag_cd

95963982102 80445908 8/1/2012 0:00 680488 41071

German DA
Problem Events

db_country international_
practice_num

international_
doctor_num

international_
patient_num age_at_event date_of_event

international_
diagnosis_nu

m

GE GE6326 GE8784 GE46478747 20
11/19/2014 

0:00 GE2397573

Ambulatory EMR
Problem

Patient_id_synth Diag_dt Icd10_cd

271138 4/11/2013 I214

Diagnosis

db_country international_dia
gnosis_num diagnosis_num icd10_4_code icd10_3_text diagnosis_conf

idence

GE GE2397573 2397573 I21.4

Non-ST elevation 
(NSTEMI) myocardial 

infarction Confirmed

4 real observational databases, all containing 
an inpatient admission for a patient with a 
diagnosis of ‘acute subendocardial infarction’
• Not a single table name the same…
• Not a single variable name the same….
• Different table structures (rows vs. 

columns)
• Different conventions (with and without 

decimal points)
• Different coding schemes (ICD9 vs. ICD10)
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What does it mean to ETL to OMOP CDM?
Standardize structure and content

PharMetrics Plus
Inpatient Claims 

pat_id claimno from_dt to_dt diagprc_ind Diag_admit
05917921689 IPA333393946 1/5/2006 1/5/2006 1 41071

PharMetrics Plus
CONDITION_OCCURRENCE

PERSON_ID
CONDITION_
START_DATE

CONDITION_
SOURCE_
VALUE CONDITION_TYPE_CONCEPT_ID

05917921689 1/5/2006 41071Inpatient claims - primary position

05917921689 1/5/2006 41071Inpatient claims - 1st position

Transform structure optimized for large-scale 
analysis for clinical characterization, population-
level estimation, and patient-level prediction

Augment content using international vocabulary 
standards that can be applied to any data source

PharMetrics Plus
CONDITION_OCCURRENCE

PERSON_ID
CONDITION_
START_DATE

CONDITION_
SOURCE_
VALUE CONDITION _TYPE _CONCEPT_ID

CONDITION 
_SOURCE 
_CONCEPT_ID

CONDITION 
_CONCEPT_ID

05917921689
1/5/2006 41071Inpatient claims - primary position 44825429 444406

35

Maintain provenance by preserving 
source values and source location in 
standard structure



OMOP CDM = Standardized structure:
same tables, same fields, same datatypes, 
same conventions across disparate sources

PharMetrics Plus:  CONDITION_OCCURRENCE

PERSON_ID
CONDITION_
START_DATE

CONDITION
_SOURCE_V

ALUE CONDITION_TYPE_CONCEPT_ID

157033702 1/5/2006 41071 Inpatient claims - primary position

157033702 1/5/2006 41071 Inpatient claims - 1st position

LRX/DX:  CONDITION_OCCURRENCE

PERSON_ID
CONDITION_
START_DATE

CONDITION
_SOURCE_V

ALUE CONDITION_TYPE_CONCEPT_ID

80445908 8/1/2012 41071 Primary Condition

German DA : CONDITION_OCCURRENCE

PERSON_ID
CONDITION_
START_DATE

CONDITION
_SOURCE_V

ALUE CONDITION_TYPE_CONCEPT_ID

46478747

11/19/2014 I21.4 EHR problem list entry

Ambulatory EMR : 
CONDITION_OCCURRENCE

PERSON_ID
CONDITION_
START_DATE

CONDITION
_SOURCE_V

ALUE CONDITION_TYPE_CONCEPT_ID

271138 4/11/2013 I214 Primary Condition

• Consistent structure optimized for large-
scale analysis

• Structure preserves all source content and 
provenance
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OMOP CDM = Standardized content:
common vocabularies across disparate 

sources
PharMetrics Plus:  CONDITION_OCCURRENCE

PERSON_ID

CONDITION 
_START 
_DATE

CONDITION 
_SOURCE 
_VALUE

CONDITION _TYPE 
_CONCEPT_ID

CONDITION 
_SOURCE 
_CONCEPT_ID

CONDITION 
_CONCEPT_ID

05917921689
1/5/2006 41071

Inpatient claims -
primary position 44825429 444406

LRx/Dx:  CONDITION_OCCURRENCE

PERSON_ID

CONDITION 
_START 
_DATE

CONDITION 
_SOURCE 
_VALUE

CONDITION _TYPE 
_CONCEPT_ID

CONDITION 
_SOURCE 
_CONCEPT_ID

CONDITION 
_CONCEPT_ID

80445908
8/1/2012 41071Primary Condition 44825429 444406

German DA : CONDITION_OCCURRENCE

PERSON_ID

CONDITION 
_START 
_DATE

CONDITION 
_SOURCE 
_VALUE

CONDITION _TYPE 
_CONCEPT_ID

CONDITION 
_SOURCE 
_CONCEPT_ID

CONDITION 
_CONCEPT_ID

6478747 11/19/2014 I21.4
EHR problem list entry

45572081 444406

Ambulatory EMR : CONDITION_OCCURRENCE

PERSON_ID

CONDITION 
_START 
_DATE

CONDITION 
_SOURCE 
_VALUE

CONDITION _TYPE 
_CONCEPT_ID

CONDITION 
_SOURCE 
_CONCEPT_ID

CONDITION 
_CONCEPT_ID

271138 4/11/2013 I214 Primary Condition 45572081 444406

• Standardize source 
codes to be uniquely 
defined across all 
vocabularies

• No more worries 
about formatting or 
code overlap 

• Standardize across 
vocabularies to a 
common referent 
standard 
(ICD9/10→SNOMED)

• Source codes mapped 
into each domain 
standard so that now 
you can talk across 
different languages
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ETL best practices

• Create ETL specification design document to promote 
transparency

• Share ETL source code to enable reproducibility

• ETL unit testing to improve concordance between specification 
and implementation

• Enable data quality exploration at all stages of analysis lifecycle 
using standardized data characterization tools



Create ETL specification design document to 
promote transparency

https://github.com/OHDSI/WhiteRabbit

https://github.com/OHDSI/WhiteRabbit


Share ETL source code to enable reproducibility

https://github.com/OHDSI/ETL-CDMBuilder

https://github.com/OHDSI/ETL-CDMBuilder


ETL unit testing to improve 
concordance between specification and 

implementation

http://www.ohdsi.org/web/wiki/doku.php?id=documentation:
software:whiterabbit:test_framework

http://www.ohdsi.org/web/wiki/doku.php?id=documentation:software:whiterabbit:test_framework


Enable data quality exploration at all 
stages of analysis lifecycle using 

standardized data characterization tools

https://github.com/OHDSI/Achilles

https://github.com/OHDSI/Achilles


Software
Validation

Methods
Validation

Clinical
Validation

Data
Validation

The goal isn’t “data quality”, 
it’s “evidence quality” so need to apply 
a more holistic approach to validation

Data : are the data completely 
captured with plausible values in a 
manner that is conformant to 
agreed structure and conventions?

Software : does the software do 
what it is expected to do?

Clinical:  to what extent does 
the analysis conducted match 
the clinical intention?

Statistical : do the estimates 
generated in an analysis 
measure what they purport to?

Validation:  “the action of checking or 
proving the accuracy of something”



Structuring the journey from source to a common 
data model

Patient-level 
data in source 

system/schema

Patient-level 
data in  

Common Data 
Model

ETL 
design

ETL 
implement

ETL test

One-time Repeated

Types of ‘validation’ required: 
Data validation, software validation (ETL)  



Structuring the journey from a common data model 
to evidence

Single study

Real-time query

Large-scale analytics

Patient-level 
data in  
CDM

Reliable 
evidence

Write 
Protocol

Develop
code

Execute
analysis

Compile 
result

Develop 
app

Design 
query

Submit 
job

Review 
result

Develop 
app

Execute 
script

Explore 
results

One-time Repeated

Types of ‘validation’ required: 
Software validation (analytics), Clinical validation, Statistical validation
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Data networks have different goals and needs

• Provide information about individuals, e.g., Health 
information exchanges

• Exchange patient data for patient care at the point of care
• Need: real-time access, patient identity, minimal need for completeness or 

standardization (sending notes to read)

• Provide information about groups, e.g., Sentinel
• Public health surveillance
• Health services research
• Clinical trial planning and enrollment
• Prediction modeling
• Regulatory decision-making and medical product efficacy
• Need: size, fitness-for-use, methodology, data stability and standardization, 

transparency, reproducibility 
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All data models have same basic concepts

• Information about people
• Demographics (e.g., age, sex, race, ethnicity, residence)
• Other characteristics (e.g., disease and family history)

• Information about care documented during medical 
encounters
• Standard vocabularies document care during health care encounters
• Vital signs, images, and other measurements
• Notes

• Patient reported information
• Within healthcare setting
• In community (e.g., social media, fitness trackers, geolocation)

49



Unique Data Partner’s 
source database structure

Data Partner’s data 
transformed into Common 

Data Model format
(every data refresh)

Transformation Program

All data models have same basic approach to 
standardization

Source Data

50



Sentinel principles for data curation

• Data model should maximize user control and 
transparency
• Retain original data elements and values
• Transform values only when necessary, e.g., sex, care setting

• Create phenotypes and derived variables as part of 
analysis – analytic code documents all transformations

• Quality assessment for entire data set for every refresh 

• Data Partner participation is essential to assure that 
source data is appropriate for inclusion and use

51



Early binding versus late binding

• Sentinel data must be ready on demand - early binding
• Each data transformation is checked by operations team

• 1,000s of checks and 50+ data refreshes a year
• Checks for data model conformance, logic relationship, 

trends, outlier clinical validity

• Sentinel’s early binding approach coupled with 
• Late-binding data quality review driven by the question and 

based on data and expert input
• Validated analytic tools with embedded data quality output
• Fitness-for-use is iterative process

52



Key questions

• Who is responsible for data curation?
• Who is responsible for assuring data fidelity  between 

data source and data model?
• Who is responsible for determining whether a dataset is 

approved for use?
• For every refresh at every Data Partner?
• Is there a way to assure and document that the approved 

dataset is used for analysis?

• Do analytic tools use source data values or derived and 
mapped values?

53



Unpacking Real-World Data Curation: 
Principles and Best Practices to Support 

Transparency and Quality 
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Research-Ready Data 
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BREAK 
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Session II: Study Specific Data 
Curation to Establish a Fit-for-

Purpose Dataset
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Demographics

Diagnosis Visits

Labs Therapies

Discharge NotesPathology

Physician Notes

Radiology Report

EHR

Hospital Reports

Common 
Database

Structured 
Data 
Processing

Unstructured 
Data 
Processing

59

Data source and curation

Data 
Linkage
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2017201620152014 2018

Follicular Lymphoma (1Q 2019)
Early Breast Cancer
Mesothelioma
Hepatocellular Carcinoma
Diffuse Large B-Cell Lymphoma
Metastatic Pancreatic Cancer
Ovarian Cancer
Advanced Head and Neck Cancer
Small Cell Lung Cancer
Advanced Urothelial Carcinoma
Metastatic Prostate Cancer
Advanced Gastric / Esophageal / GEJ Cancer
Chronic Lymphocytic Leukemia
Multiple Myeloma
Metastatic Renal Cell Carcinoma
Metastatic Colorectal Cancer
Metastatic Breast Cancer
Advanced Non-Small Cell Lung Cancer
Advanced Melanoma

Confidential: subject to Flatiron / FDA Research Collaboration Agreement

Longitudinal cancer-
specific registries with 
30d recency & flexible 
data models
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Result

Result

Lab Name

Tissue Collection Site
For every PD-1/PD-L1 test a patient 
receives, Flatiron biomarker Data Model 
captures:

• Test status
• Test result
• Date biopsy collected
• Date biopsy received by laboratory
• Date result received by provider
• Lab name
• Sample type
• Tissue collection site
• Type of test (e.g., FISH)
• Assay / kit (e.g., Dako 22C3)
• Percent staining & staining intensity

Section of PD-L1 Report

Configurable Abstraction

61
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Remaining study data is captured through 
trial-specific notes and documents in the EHR

Example: Domains in an oncology 
study with EHR data source

● Demographics (DM)
● Subject Visits (SV)
● Con Meds (CM)
● Exposure (EX)
● Adverse Events (AE)
● Disposition (DS)
● Med History (MH)
● Protocol Deviations (DV)
● I/E Criteria (IE)
● Lab Test Results (LB)
● Physical Exam (PE)
● Vital Signs (VS)
● Tumor ID (TU)
● Response (RS)
● Procedures (PR)
● Subject Elements (SE)
● Death (DD)
● Reproductive (RP)
● Healthcare Encounters (HO)

Example: Flatiron Note for Adverse Events
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Configurable quality assurance & quality control

63

Upfront Ongoing Dataset QA

Centralized Controlled Environment

Feasibility

Policies & 
Procedures

Training & Testing

Performance 
Management

Review Panel

Data Alignment

Clinical Assertions

Auditing & 
Monitoring Cohort QA
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Asserting that this transformation is 
done properly

Data quality is in context

64
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Diagnosed with 
Stage II NSCLC 

Undergoes surgery for early-
stage disease

Develops metastatic 
disease

Tested for EGFR 
and ALK 

Progresses on 1L, tested for PD-
L1 and 
re-tested for EGFR

DeathStarts 1L therapy

Starts 2L therapy, deteriorates 
and is hospitalized

Diagnostic events are a combination of clinical, pathological, 
radiological, & biomarker data - in context
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Diagnosed with 
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Undergoes surgery for early-
stage disease

Develops metastatic 
disease

Tested for EGFR 
and ALK 

Progresses on 1L, tested for PD-
L1 and 
re-tested for EGFR

DeathStarts 1L therapy

Starts 2L therapy, deteriorates 
and is hospitalized
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Diagnosed with 
Stage II NSCLC 

Undergoes surgery for early-
stage disease

Develops metastatic 
disease

Tested for EGFR 
and ALK 

Progresses on 1L, tested for PD-
L1 and 
re-tested for EGFR

DeathStarts 1L therapy

Starts 2L therapy, deteriorates 
and is hospitalized
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Path?
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Diagnosed with 
Stage II NSCLC 

Undergoes surgery for early-
stage disease

Develops metastatic 
disease

Tested for EGFR 
and ALK 

Progresses on 1L, tested for 
PD-L1 and 
re-tested for EGFR

DeathStarts 1L therapy

Starts 2L therapy, deteriorates 
and is hospitalized
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Time to progression is 
dependent on when patient is 
evaluated
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Analytic guidance provided with data deliverables - e.g., 
sensitivity analysis, clinical verification 

● Deliver comprehensive analytic guide including:

- Study Overview
- Research Questions
- Inclusion/Exclusion Criteria
- Data Elements
- Baseline Characteristics
- Data Quality and Provenance 
- Data Freeze and Retention Process
- Overview of Abstracted Variables Data Quality
- Measure Inter-Rater Reliability
- Interpreting Agreement
- De-identification of Flatiron Data
- Analytic Notes
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Data Verification via Patient Journey Visualizer

71

Confidential: subject to Flatiron / FDA Research Collaboration Agreement
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Confidential: subject to Flatiron / FDA Research Collaboration Agreement

LVEF 45%
Kadcyla

Data Verification via Patient Journey Visualizer
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Monitor LVEF over time

Hospitalizations:
Discern if cardiac or cancer related

Confidential: subject to Flatiron / FDA Research Collaboration Agreement

Data Verification via Patient Journey Visualizer
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Lingua Franca for Data Quality

Not all data elements are created equal

74
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Document clinical data quality and completeness

Variable Structured 
data only

Flatiron data 
completeness

Metastatic 
diagnosis 26% 100%

Smoking status 0%1 94%
Histology 37% 99%2

Stage 61% 95%
ALK results 
(of those 
tested)

9% 100%3

EGFR results 
(of those 
tested)

11% 99%3
1 58% are free text in dedicated field in EHR (requiring hand abstraction)

2 Including 8% of patients with results pending or unsuccessful test
3 Including 6% of patients with results pending or unsuccessful test

Completeness of technology-enabled 
abstraction

Example: Advanced NSCLC

Site of met Inter-abstractor 
agreement Kappa

Bone 97% 0.93

Brain 96% 0.91

Liver 92% 0.83

Lung 94% 0.87

Accuracy of technology-enabled 
abstraction

Example: Sites of metastases
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Example: Flatiron data completeness report

Confidential: subject to Flatiron / FDA Research Collaboration Agreement
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Need a consistent approach to documenting quality of high 
risk or high value variables



Data Quality & Validation Framework

Face Validity
● Oncologist agreement with definition & approach

● Regulator and other stakeholder agreement with definition & approach

Feasibility & Quality 
of Variables 

(structured & abstracted)

● Completeness of collected data

● Inter-rater agreement on progression dates for duplicate abstracted patients 

● Qualitative feedback from abstractors reviewing the medical records  

Validity of Outputs

● Likelihood of predicting a downstream event (e.g., overall survival) 

● Association between OS and PFS/TTP
○ Patient-level correlation
○ Responsiveness of endpoint to treatment effects

Validation of Oncology Endpoints
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Evaluate data against a reference standard 
E.g., gold standard = National Death Index
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Small cohorts
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Confirmed to meet 
NSCLC EDM 

classification criteria*
N = 27,729

History of NGS 
testing

Structured order 
for a

BRAF inhibitor

Free-text search 
for

BRAF mutation

BRAF V600E 
mutated
N = xxx

Treated with a 
BRAF inhibitor

N = x

Not treated with a
BRAF inhibitor

N = x

27,729

>1000

<50



© Flatiron Health 2018

18 months
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Unstructured records contain 
crucial clinical context.

Source evidence: Radiology report Clinician confirmation: Visit note one week later
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Dan Riskin
Chief Executive Officer 

EHR-based studies and data validity
January 2019



Outline

• Introduction

• What is data validity?

• How is data accuracy assessed?

• Conclusion
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In this brief talk, we will drill down into issues of data validity

The goal is a thoughtful discussion on data validity in EHR-based studies



Outline

• Dan Riskin
• Successful serial entrepreneur with products benefiting millions of patients
• Adjunct Professor of Biomedical Informatics Research at Stanford
• Testified on 21st Century Cures Initiative

• Verantos
• Silicon Valley firm providing advanced EHR-based RWE studies
• 3 of the top 10 biopharma firms are customers
• Supported by NIH and NSF
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Who is speaking?

The goal is a thoughtful discussion on data validity in EHR-based studies



Introduction
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What is data validity?



Study validity

A study is valid if the evidence is sufficient to make the 
clinical assertion

91

What determines study validity?

Validity is not a new expectation for physicians, researchers, or FDA



The changing face of RWE

Registry
(Traditional model) 

EHR
(New model)

Benefits Controlled data collection
Tailored information

Scale and power
Flexibility in subgroups

Challenges Limited scale
Limited flexibility

Data collected for clinical use
Technically challenging
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Product franchises are adding EHR-based studies to their RWE strategy

EHR-based studies represent the area of fastest growth in RWE



Study validity

• Accuracy
• Accuracy must be measured
• Accuracy should be high enough to justify the clinical assertion

• Generalizability
• The demographics and disease burden must be measured
• These should adequately reflect characteristics of the target population

• Currently, regulators do not consistently require accuracy assessment in EHR-based studies, so this will
be the focus of the talk
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Study validity requires accuracy and generalizability

Data accuracy and generalizability are required if assertions are made
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How is data accuracy assessed



Disruptive changes in EHR-based studies

• Current use cases
• Pharma uses purchased data sets for trial recruitment and marketing insight
• Clinical assertions are not made in these uses, so accuracy is not measured

• Limitations in translating legacy data sets to regulatory-grade studies
• Purchased EHR structured data sets have no underlying narrative or chart, so accuracy cannot be determined
• When measured, these data sets have low cohort accuracy, with sensitivity < 50%
• There is known bias, skewing toward higher sensitivity for sicker patients

• What is not good enough?
• Not checking is not good enough
• 50% accuracy is not sufficient to justify a 10% difference in study arms
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Past EHR-based approaches do not translate to regulatory-grade studies

The industry must move past legacy data and tech to meet requirements



The specificity fallacy

• Why is specificity easier to measure than sensitivity?
• Example: A pancreas cancer study uses 300 patients out of a 1 million patient EHR
• The firm pulls the 300 charts from structured data and performs a chart abstraction to assess pancreas cancer 

false positives
• The firm does not sample a portion of the million records to assess false negatives
• Specificity is calculated, but sensitivityis ignored

• Why does ignoring sensitivity matter?
• Sensitivity is where the error and bias resides
• There is known skew in EHR accuracy… Sicker patients have more visits and are more likely to be added to the 

problem list
• With a skew toward sicker patients, conclusions may be wrong or non-applicable
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Some RWE firms report specificity but not sensitivity

The industry cannot be allowed to test what’s easy and ignore what’s hard



Case study

1. Firm X wanted to run a PCT and started by testing EHR cohort accuracy
1. Requires underlying chart
2. Requires willpower to actually check both specificity and sensitivity

2. Structured data accuracy was found to be insufficient for the assertion
1. Structured data alone had cohort accuracy of 61.4% (F1-score, blended Sn and Sp)
2. NLP alone brought cohort accuracy above 85%

1. E.g. “Admitted for r/o MI.”
3. NLP + additional  AI brought accuracy to 95.3%

1. E.g. “Admitted for r/o MI. C/o chest pain. EKG revealed ST elev. Troponin elevated.”
3. After enhancement, cohort accuracy met success criteria

1. Support planned pragmatic clinical trial
2. Will submit with a data validity report that measures accuracy for all key cohorts
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How can a large biopharma firm run high quality RWE studies?

Setting a high bar will keep healthcare safe and encourage innovation



Looking at data accuracy

Feature EHR structured EHR unstructured

Hypercholesterolemia Recall: 55.1%
Precision 98.0%

Recall: 98.2%
Precision 99.4%

Diabetes mellitus Recall: 80.6%
Precision 97.9%

Recall: 97.0%
Precision 92.6%

Chronic kidney disease Recall: 40.8%
Precision 97.6%

Recall: 92.9%
Precision 97.9%

Dementia Recall: 62.1%
Precision 100.0%

Recall: 93.1%
Precision 90.0%
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What happens when we look at cohort accuracy?

If the FDA says data accuracy matters, firms will measure accuracy
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Conclusion



Conclusion

• When a clinical assertion is made, validity must be assessed
• Validity should include accuracy and generalizability
• Accuracy must include both sensitivity and specificity
• If underlying data are insufficiently valid for the assertion, the data must be demonstrably enhanced or the

assertion limited
• Enhancement approaches include natural language processing, other AI-based approaches, and clinical

documentation improvement
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Advanced RWE requires advanced validity assessment

Regulators should require accuracy assessment (sensitivity and specificity) for all key cohort for all
EHR-based studies
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Thank You

dan.riskin@verantos.com www.verantos.com
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Study-specific data curation in PCORnet®
Keith Marsolo, PhD

Department of Population Health Sciences, Duke University School of Medicine

Distributed Research Network Operations Center (DRN OC)

PCORnet Coordinating Center
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Disclosures

Previously served as a consultant for Novartis

This work was supported through several Patient-Centered Outcomes Research 
Institute (PCORI) Program Awards (CC2-Duke-2016; ASP-1502-27079; OBS-1505-
30699; OBS-1505-30683). All statements are solely those of the speaker and do not 
necessarily represent the views of PCORI, its Board of Governors or Methodology 
Committee.



PCORnet® embodies a “network of networks” 
that harnesses the power of partnerships
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Patient Partners
9

Clinical Research 
Networks (CRNs)

A national 
infrastructure for 
people-centered 
clinical research

+ =+
2

Health Plan 
Research Networks

(HPRNs)
+

1
Coordinating 

Center 



PCORnet® Data Strategy

Standardize data into a common data model

Ensure that data support the question (data curation) 
 Foundational
 Study-specific 

Operate a secure, distributed query infrastructure
 Develop re-usable tools to query the data
 Send questions to the data and only return required information

Learn by doing and repeat



Assessing foundational data quality – Data Curation

Purpose
 Evaluate data quality and fitness-for-use across a broad research portfolio
 Generate meaningful, actionable information for network partners, investigators and 

other stakeholders

Resources
 Implementation Guidance to accompany CDM specification
 ETL Annotated Data Dictionary
 Data quality checks

• Conformance
• Completeness
• Plausibility
• Persistence

 Data curation query packages
 Analyses and reports
 Discussion Forums
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Step 5
Coordinating Center 

holds Discussion Forums; 
updates Implementation 
Guidance; and updates 

Data Checks

Step 4
Coordinating Center 
analyzes results and 

solicits more information 
as needed

2x
or more 
per cycle

Step 1
Network 

partner plans 
DataMart 
refresh

Step 2
Network partner 
responds to the 

data curation query 
package

Step 3
Coordinating 

Center approves 
the DataMart



Study-specific data curation

First challenge: convincing investigators that this step is even necessary 
(even more difficult if Coordinating Center is not the one running the study)

Second challenge: what do to do with the results
 Address the issue & incorporate into the foundational curation process (preferred)

• Medication coding
• Data latency

 Consider proxy variables
• Days supply

 Leverage alternative data sources
• Collect data on events directly from patients to supplement CDM 

(ADAPTABLE – out of scope for this talk)
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Medication coding

Information about the 
medication ingredient, 
strength, and dose 
form is needed for 
many studies

Implementation 
Guidance developed to 
establish the preferred 
mapping strategy

Data Curation added a 
data check to measure 
adherence to the 
guidance
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Incorporating medication coding into data curation

Note: all partners must pass this check 
starting July 2019



Data latency

Latency / completeness of data

Questions:
 “How complete & up-to-date are the data we’re looking at?” (DSMB)
 “What’s the data censoring date for participants?” (Statistician)

Developed latency calculation & incorporated into data curation
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Trial 
Enrollment

Rx
Filled

Lab
Draw

Office
Visit

Office
Visit

No events?
Or just no data?

PCORnet 
Query Date



Data latency as part of data curation
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Proxy variables – days supply

Study Aims: To evaluate the comparative effects of different types, timing, and amount 
of antibiotics prescribed during the first 2 years of life on: 
 Body mass index and risk of obesity at 5 and 10 years 
 Growth trajectories from infancy onwards

Sample findings from study-specific characterization
 Days supply – highly missing
 Start date minus end date – low percent missing – very different from the global 

measure

One key takeaway – a proxy variable for one study may not be suitable for another
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Open issues (one example)

Differentiating between data quality issues & normal practice variation

114

Didn’t load lab into 
CDM (probably)

Missing labs or 
practice variation?



Next steps / recommendations

Need to stress importance of fixing data issues that can be resolved
 Datamart administrators are typically not the ones using the data, so they 

may not understand the impact of leaving things unaddressed

Identify incentives that would improve data quality on the front end
 Clinicians will support changes in workflow (within reason) if there’s a benefit 

to them 
 Goes beyond research – precision medicine, analytics, etc.  (better care?)

Define guidance for what it means to be “regulatory grade”
 Can we create a checklist as opposed to “we know it when we see it”?
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LUNCH 

117



Session III: Linking Multiple Data 
Sources

118



Linking Multiple Data Sources: 
Considerations for Use Cases and 

Quality

Shaun J. Grannis, MD, MS, FAAFP, FACMI
Director, Regenstrief Center for Biomedical Informatics

Regenstrief Clem McDonald Scholar for Biomedical Informatics
Associate Professor, Family Medicine, IU School of Medicine

Biomedical Research Scientist, Regenstrief Institute



Data Management Data Access & Use

Hospitals

Physicians

Labs

Public

Health

Payer

• Results delivery

• Secure document transfer

• Shared EMR

• Credentialing

• Eligibility checking

• Results delivery

• Secure document transfer

• Shared EMR

• CPOE

• Credentialing

• Eligibility checking

• Results delivery

• Surveillance

• Reportable conditions

• Results delivery

• De-identified, longitudinal

clinical data

• Secure document transfer

• Quality Reporting

• De-identified, longitudinal

clinical data (OMOP CDM, i2b2)

• Subject Recruitment

• Clinical Trials

Researcher

Data Linkage: The Indiana Network for 
Patient Care (INPC)

Hospital

Data 

Repository

Health 

Information 

Exchange

Network 

Applications

Payers

Labs

Outpatient RX

Physician Office

Ambulatory Centers

Public Health









Linkage Metrics
1. Algorithm metrics:

• sensitivity (recall), PPV (precision), F-measure
2. Data Quality metrics:

• completeness (missing rate)
• accuracy/error rates (conformance to known data 

requirements/business rules)
• discriminating power (various measures)

3. Business processes metrics
• Data validation methods
• Compliance with established process standards

How to compare across sites/regions?
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Shaun J. Grannis, MD, MS, FAAFP, FACMI
Director, Regenstrief Center for Biomedical Informatics

Regenstrief Clem McDonald Scholar for Biomedical Informatics
Associate Professor, Family Medicine, IU School of Medicine

Biomedical Research Scientist, Regenstrief Institute
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Connecting the world’s health data
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What we do
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2. Link
Connect matching patient records 
across datasets to increase data 
completeness and dimensionality

1. Protect
De-identify datasets to protect 
patient privacy and reduce risk

3. Discover
Help institutions discover data sources 
that augment their knowledge of a 
population

…to expand the set of questions that 
can be answered in healthcare

Assembling a more holistic view of the 
patient…
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Secure, HIPAA-Compliant De-identification 
• Datavant’s technology can be installed on-premise, meaning that we don’t need access to client’s data or 

systems 

• We work with clients to configure the de-identification rules required for a specific data layout and use 
case, using Safe Harbor or the Expert Determination method to ensure compliance with HIPAA
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Configured template with rules

First Name John

Last Name Smith

Gender Male

Date of Birth March 27, 1968

Address 5 Pine Street

Zip Code 95401

Remove

Remove

Pass through

Convert to birth year

Remove

Convert to 3-digit zip area

Create token from name, DOB and gender

Input data

Null

Null

Male

1/1/1968

Null

954

Output data

AA001

De-identification engine
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Adding Anonymized Linking Tokens to Each Record
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Our tokenization process has been 
cryptographically-certified as secure, and 
our de-identification software produces 
datasets that have been certified to be in 
compliance with HIPAA

Token creation has two 
steps:

1. Hashing: Makes tokens 
irreversible, securing users from 
employee or Business Associate 
regulatory violations

2. Encryption: Makes tokens site-
specific, protecting users from a 
partner’s security breach 

Irreversible Hash Process Site-Specific Encryption

Jsmith03271968M

@#JSDFTsdf093s$#2s

S024nsdf23$#sd*dfs

#Jsf%)sd@#FSDsd1lv9

Token structure
(defined in template)

Datavant Master Seed

Master Token
(in process only)

Site A Encryption Key

Token Generation Process

John
Smith 
03/27/1968 
Male

PHI in 
structured 

record

Site-specific 
token

AA0001
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Linking De-Identified Data With Tokens

Connect patient records across multiple datasets without ever sharing PHI
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Multiple sources sending data to recipient

John Smith

AA00001

AC00001

Source A Source B

Site-specific 
token creation

Conversion to 
destination tokens

Deliver data with 
transit tokens

Deliver data with 
transit tokensCC00001=CC00001

Destination C

Joining patient records without PHI

John Smith

BB00001

BC00001

Token
Transformation

De-identification 
Engine

De-identification 
Engine

Token
Transformation

• Because tokens are site-specific, they 
cannot be matched across sites unless 
they are transformed.

• When both parties agree to exchange 
data, Datavant enables a second piece of 
software to convert tokens from one 
encryption key to another.

• In this way, tokens from different sources 
can be converted into a common 
encryption key to allow joining.

• Once in a common key, tokens from the 
different datasets are matched according 
to each user’s needs.
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Logic to Support Stringent AND Broad Matching
We recommend not picking a single token or token combination for matching logic, but to instead take 
advantage of multiple matching options using a "drop through" or “waterfall” technique.

132

1. The most stringent set of tokens are 
used in the first round to define a 
match. 

2. Any records matched in this round are 
put aside, and only unmatched 
records move to the next round.

This cycle is repeated using less and less 
stringent matching logic over multiple 
rounds. 

Best matches are always made first, with 
only a few rounds used for stringent 
matching, and many rounds used for 
broad matching.
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Appendix
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Matching with Datavant Tokens
Using Datavant’s software, companies can de-identify and tokenize patient records so that they can be linked 
across disparate datasets.  

Patient records can be linked based on token matches (when tokens are in the same site key). The quality of a 
given match depends on the tokens used and on the specific matching logic. 

Datavant has many different token types that are composed from different combinations of PII:

• Some designs are deterministic (using Social Security Number, for example) 

• Most designs are probabilistic (based on a combination of non-unique fields such as: first name, last name, 
DOB and gender)

Datavant recommends adding multiple tokens to each data file to: 

• Increase the chances that de-identified datasets will share common tokens and be join-able

• Increase accuracy of matching by having more tokens with which to confirm a match result

• Allows clients to select matching stringency – from strict to broad – depending on their specific use case 
and their sensitivity to either false positives or false negatives 
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Sam Roosz
Head of Partnerships

+1.765.490.9385
sam@datavant.com

2 Embarcadero Center 
9th Floor
San Francisco, CA 94111 

415-520-1171
info@datavant.com
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The Global Health Research Network

PRESENTED BY:

COPYRIGHT © 2019 TRINETX, INC. ALL RIGHTS RESERVED. CONFIDENTIAL

LINKING IN PRACTICE 

Steven Kundrot

January 22, 2019
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• Global health research network

• Cloud-based platform enabling on-
demand access to real-world data and 
analytic tools

• Data sourced and continuously 
refreshed from EMRs, Claims, PRO, 
registries and unstructured sources 

• Path back to the patient via IRB and 
Honest Broker 

• Data is downloadable

• Federated model & compliant with 
international privacy standards
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Pharma Regulatory

CROs

Healthcare
Organizations

Healthcare
Organizations

Healthcare
Organizations

Data PartnersPatient Registries
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139THE EVOLUTION OF TRINETX DATA

EHR

Diagnoses, 

procedures, 

medications, & 

lab results.

Oncology & 

Genomics

Tumor site,  

morphology, & 

biomarkers. 

Genetic tests & 

variants.

Natural Language 

Processing

Extract clinical facts 

from free text 

notes.

Claims Data

Medical & 

pharmacy claims. 

Cost data.

Patient Linking

Combine [de-identified] 

data sets to create 

longitudinal patient 

records.

(EHR, Claims, PRO, 

Registry …)
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KEY ASSUMPTIONS

• Governance/privacy
• Broad applicability
• Matching validity
• Performance and scale
• Flexible implementation

VENDOR SNAPSHOT

• Datavant / UPK
• Health Data Link
• Verato
• Experian
• Health Verity
• Symphony Health

LINKING:  SOLUTION CONTEXT

Implementation within the context of a federated, global network …
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141LINKING:  ORCHESTRATION

Create Patient
Demographic File

Run TriNetX
Key Generator

De-Identified 
Site-Specific Keys

Convert to
TriNetX Master 

Keys

De-Identified 
3rd Party Keys

3rd Party
Data

Match 
Records

Copy of 
Linked Data

HEALTHCARE ORGANIZATION

1 2 3 5 6

7

Healthcare Org.
Patient Data

4
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142LINKING:  GOVERNANCE

ELIGIBLE COHORT AUTHORIZED FOR EXPORT ID

SOURCE OF ELIGIBILITY
Healthcare Organization Data
Linked Claims Data
Linked Patient Reported Outcomes Data
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143LINKING: RESULTS

• Matches based on 99% probability
• Potential for pool and depth/breadth increase

• Orphan patient:  a patient w/o any facts before linking
• Patient pool increased

• Depth of deceased knowledge increased
• Decease pool increased

• Potential for clinical depth/breadth increase
• Potential for longitudinal increase
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144LINKING:  RESULTS

• Increase in completeness
• Increase in longitudinally
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145LINKING:  WHAT’S NEXT

• Linking throughout our network

• On-going assessment of linking
• Quality of matching
• Depth/breadth significance

• Development of standard metrics
• Transparent to community
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Session IV: Documentation for Traceability and 
Auditing

Amy Abernethy, MD, PhD
Chief Medical Officer / Chief Scientific Officer & SVP - Oncology, Flatiron Health (a member of the Roche 
Group)
Adjunct Professor of Medicine, Duke University School of Medicine
@dramyabernethy  ⬧⬧ amy@flatiron.com
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Diagnosed with 
Stage II NSCLC 

Undergoes surgery for early-
stage disease

Develops metastatic 
disease

Tested for EGFR 
and ALK 

Progresses on 1L, tested for PD-
L1 and 
re-tested for EGFR

DeathStarts 1L therapy

Starts 2L therapy, deteriorates 
and is hospitalized

Documentation of source, quality and 
provenance.
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Diagnosed with 
GBM

Undergoes surgery 

Receives 
adjuvant 
therapy

Progresses on 
adjuvant therapy

Progresses on 1L

Patient 
deteriorates 
leading to 
hospitalization / 
death

Starts 1L therapy

Starts on 2L

152

Patient age
Gender
Race
Insurance
Group Staging
Smoking Status
Site of Disease
Comorbidities

Date of surgery

Medical admins / orders
Dosage
Concomitant meds
Duration of therapy Date of met Dx

(time to recurrence)
Sites of metastases

Date of progression (with 
scan or lab result to confirm)

Medical admins / orders
Dosage
Concomitant meds
Regimen name
Duration of therapy
Adverse events
Response

Date of death
Date of death
Date of death
Consensus date of 
death

Structured EMR data Unstructured EMR data External mortality data Combined / derived data

A comprehensive view of the patient journey

Medical admins / orders
Dosage
Concomitant meds
Regimen name
Duration of therapy
Adverse events
Response
Reason for 
discontinuation

*Relative timing not exact
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Patient Stage at Dx Biomarkers 2L Treatment Progression Date of Death

Jane Doe II EGFR-, ALK-, PD-L1- nivolumab 2017-03-08 2017-04-12

Diagnosed with 
Stage II NSCLC 

Undergoes surgery for early-
stage disease

Develops metastatic 
disease

Tested for EGFR 
and ALK 

Progresses on 1L, tested for PD-
L1 and 
re-tested for EGFR

DeathStarts 1L therapy

Starts 2L therapy, deteriorates 
and is hospitalized
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Patient Stage at Dx Biomarkers 2L Treatment Progression Date of Death

Jane Doe II EGFR-, ALK-, PD-L1- nivolumab 2017-03-08 2017-04-12

Diagnosed with 
Stage II NSCLC 

Undergoes surgery for early-
stage disease

Develops metastatic 
disease

Tested for EGFR 
and ALK 

Progresses on 1L, tested for PD-
L1 and 
re-tested for EGFR

DeathStarts 1L therapy

Starts 2L therapy, deteriorates 
and is hospitalized

Starts 1L therapy

> Abstracted by Sue Smith on 4/30/17 at 10:10am
> Physician notes and scan interpretation reviewed
> Medical record from West Florida Cancer Clinic

Quality of Progression abstraction
===================================

> Completeness: 99% 
> Sue Smith is 96% accurate at last testing
> Inter-abstractor agreement: 97%
> Kappa: 0.93

> Audit trail for any changes
> Dataset freeze and storage

Abstraction Details
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Clinical Depth
Data granularity to enable appropriate interpretation 
and contextualization of patient information.

Completeness
Inclusion of both structured and unstructured 
information supports a thorough understanding of 
patient clinical experience.

Longitudinal Follow-up
Ability to review treatment history and track patient 
journey going forward over time.

Quality Monitoring
Systematic processes implemented to ensure data 
accuracy and quality.

Meta-characteristics of RWD and RWE
Regulatory grade RWE, a potential checklist

Timeliness / Recency
Timely monitoring of treatment patterns and trends 
in the market to derive relevant insights.

Scalability
Efficient processing of information with data model 
that evolves with standard of care.

Generalizability
Representativeness of the data cohorts to the 
broader patient population.

Complete Provenance
Robust traceability throughout the chain of 
evidence.
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Data documentation in the Aetion 
Evidence Platform
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The platform approach

At Aetion, we take a platform approach that combines:

• Data ingestion
• Data storage
• Data measurement
• Analytic workflows

This allows for testing, validation, and full traceability and transparency.

It also creates a “closed system” for documenting/archiving/auditing data transformations 

and provenance. 
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Stage 1 validation & reporting

Verify: do the loaded data match the provided data?

Part 1: rules-based “sanity checks”

• Do the imported datasets meet technical expectations?

Part 2: semi-automated validation

• Do the imported datasets meet scientific expectations?
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Stage 2 reporting & versioning

As data are used, document each and every step.

Part 1: archived, auditable reporting

• Provide natural language reporting on how data are put to use 

in a study (e.g., data element -> measurement)

Part 2: comprehensive versioning

• Provide traceable versioning (provenance and history) of each 

measurement; taken together, becomes a full catalog of how a 

study came to be 
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“Stage 3” and beyond

Continue to document study beyond the data steps

• Epidemiological assumptions applied (eg, exposure grace 

period)

• Statistical methods used

• Relevant literature 

• Results
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From aetiology (Greek): 

The cause of diseases and disorders; the investigation or 

attribution of the cause or reason for something.

Ae-ti-on
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Data Documentation for 
Traceability and Auditing 
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Systematic Approach to Managing Big Data
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Data Integration

Data onboarding into HealtheIntent
• Data sources, data sets

• Data source: A software system that sends data to HealtheIntent.  This is typically a vendor (i.e. BCBS)
• Data Set: Set of data file(s) from a Data Source that can be mapped to a data model in HealtheIntent 

(ie. medical claims, results, medications, demographics, allergies)
• Many formats supported: HL7, X12, CCD, XML, CSV flat files

• File Frequency
• how often will new data be received/extracted and uploaded to HealtheIntent

01011110110001000111001101 10100 1 110011 110 10100 0110101 00100011 11001011001001

010111 10110001 000111001101 10100 1 110011 110010 011001 10100 011010100100011 11001011
01011110110001000111001101 10100 1 110011 110 10100 0110101 001

010111 10110001 000111001101 10100 1 110011 110010 011001 10100 0110101 00100011 11001011 00100110011

010111 10110001 000111001101 10100 1 110011 110010 011001 10100 0110101 00100011 11001011 001001100111 01010111111000111011 0100
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Loading Multiple Data Sources

Internal 
Validation

Internal 
Activation

Client 
Validation

Client 
Activation

MPM 
Onboard

Ref RecordCode 
Standard-

ization

Structural 
Mapping

Discovery 
“Vetting”

Sample FileData 
Source 

Strategy

+

Non-Cerner Data Source

Data Vetting:
Data Vetting is the process of analyzing the 
raw data files for content, format, and 
consistency before we on-board into 
HealtheIntent
• This process requires collaborating 

sessions between Cerner, Client and 
Vendor and can take a few weeks to 
complete.



1802775327-v2/October2018 ©Cerner Corporation. All rights reserved. 171

Reconcile records to a single source of truth

John Doe A
SSN 111-22-1234

Address:100 main,
Lenexa, KS 66215

Hospital A

Jon Doe B
SSN 111-22-1234

Address:100 main,
Lenexa, KS 66215

Clinic A

Jane Doe C
SSN 111-22-2345

Address:100 main,
Lenexa, KS 66215

Hospital B

Identify like- reference 
records

Determine similarity 
score to confirm 
records match

SSN

AliasAddress

First name
Last nameDOB

Phone

Race

Ethnicity Gender

Assign unique EID 
number to linked 

records

No link   |    Manual    |    Auto link

EID 2468
Record ID A Record ID B

John Doe Jon Doe

SN 111-22-1234 SN 111-22-1234

DOB 11/30/75 11/30/75

100 Main, Lenexa, KS 100 Main, Lenexa, KS
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Organize data into concepts

Aspirin (Multum d00170)

Allergies

Conditions

Immunizations

Lab results

Medications

Procedures

Visits

Vitals

Medications Most recent
Aspirin (Multum d00170) Mar 13, 2016

Medication Date Source
aspirin 300 mg oral delayed release 
tablet 3/24/2014 Westwatch Bay

aspirin 227.5 mg oral gum 10/17/201
3 Baseline East

ASA 500 MG Oral Tablet [Bayer 
Aspirin] 9/23/2013 Westwatch Bay

Aspirin 4/23/2013 Get Well Now
aspirin 2/18/2013 Westwatch Bay
Aspirin 5/14/2012 Baseline East
aspirin 300 mg oral tablet 6/20/2011 Get Well Now

ICD-9

LOINC
Medi-Span

NDC
CPT

MEDCIN

ICD-10
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• Provenance definition
• According to HL7 FHIR specification, provenance is a record that describes entities and processes 

involved in producing and delivering or otherwise influencing that resource. Provenance provides a 
critical foundation for assessing authenticity, enabling trust, and allowing reproducibility. Provenance 
assertions are a form of contextual metadata. Provenance indicates clinical significance in terms of 
confidence in authenticity, reliability, and trustworthiness, integrity, and stage in lifecycle, all of which 
may impact security, privacy, and trust policies.

• Granularity of the entities – device, individual, institution
• Documents versus data

• Provenance complexities
• Individual
• Institution/Organization

• Multiple facilities
• Multiple EHRs
• Multiple EHR domains
• Non-EHR systems

• Multiple source inference
• Aggregation entities – e.g. HIEs
• Intermediaries and networks

Provenance Tracking
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	•
	Who is responsible for data curation?
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	approved for use?
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	Do analytic tools use source data values or derived and 
	mapped values?
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	talk
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	•
	•
	•
	•
	•
	Current
	use
	cases


	•
	•
	•
	•
	Pharma
	uses purchased data sets for trial recruitment and marketing insight


	•
	•
	•
	Clinical assertions are not made in these uses, so accuracy is not measured



	•
	•
	•
	Limitations
	in
	translating
	legacy
	data
	sets
	to
	regulatory
	-
	grade
	studies


	•
	•
	•
	•
	Purchased EHR structured data 
	sets have no underlying narrative or chart, so accuracy cannot be determined


	•
	•
	•
	When measured, these data sets have low cohort accuracy, with sensitivity < 
	50
	%


	•
	•
	•
	There is known bias, skewing toward higher 
	sensitivity for 
	sicker patients
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	•
	•
	What
	is
	not
	good
	enough?


	•
	•
	•
	•
	Not checking is not good enough


	•
	•
	•
	50% accuracy is not sufficient to justify a 10% difference in study arms
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	•
	•
	•
	•
	Why
	is
	specificity
	easier
	to
	measure
	than
	sensitivity?


	•
	•
	•
	•
	Example: A pancreas cancer study uses 
	300 
	patients out of a 
	1 
	million patient EHR


	•
	•
	•
	The firm pulls the 
	300 
	charts from structured data and performs a chart abstraction to assess pancreas cancer 
	false positives


	•
	•
	•
	The firm does not sample a portion of the million records to assess false negatives


	•
	•
	•
	Specificity 
	is 
	calculated, but 
	sensitivityis
	ignored
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	Why
	does
	ignoring
	sensitivity
	matter?
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	•
	•
	•
	Sensitivity is where the error and bias resides


	•
	•
	•
	There is known skew in EHR accuracy
	…
	Sicker patients have more visits and are more likely to be added to the 
	problem list


	•
	•
	•
	With a skew toward sicker patients, conclusions may be wrong or non
	-
	applicable
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	Requires underlying chart
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	Structured
	data
	accuracy
	was
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	for
	the
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	•
	•
	•
	•
	•
	When
	a
	clinical
	assertion
	is
	made,
	validity
	must
	be
	assessed


	•
	•
	•
	Validity
	should
	include
	accuracy
	and
	generalizability
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	•
	•
	Accuracy
	must
	include
	both
	sensitivity
	and
	specificity


	•
	•
	•
	If
	underlying
	data
	are
	insufficiently
	valid
	for
	the
	assertion,
	the
	data
	must
	be
	demonstrably
	enhanced
	or
	the
	assertion
	limited


	•
	•
	•
	Enhancement
	approaches
	include
	natural
	language
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	clinical
	documentation
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	Evaluate data quality and fitness
	-
	for
	-
	use across a broad research portfolio


	
	
	
	Generate meaningful, actionable information for network partners, investigators and 
	other stakeholders
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	Implementation Guidance to accompany CDM specification


	
	
	
	ETL Annotated Data Dictionary


	
	
	
	Data quality checks
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	•
	Conformance
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	Completeness
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	Plausibility
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	Data curation query packages


	
	
	
	Analyses and reports
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	Address the issue & incorporate into the foundational curation process (preferred)
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	•
	•
	•
	Medication coding


	•
	•
	•
	Data latency



	
	
	
	Consider proxy variables


	•
	•
	•
	•
	Days supply



	
	
	
	Leverage alternative data sources


	•
	•
	•
	•
	Collect data on events directly from patients to supplement CDM 
	(ADAPTABLE 
	–
	out of scope for this talk)
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	Information about the 
	Information about the 
	Information about the 
	Information about the 
	Information about the 
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	medication ingredient, 
	strength, and dose 
	form is needed for 
	many studies
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	Guidance developed to 
	establish the preferred 
	mapping strategy
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	“How complete & up
	-
	to
	-
	date are the data we’re looking at?” (DSMB)


	
	
	
	“What’s the data censoring date for participants?” (Statistician)
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	of antibiotics prescribed during the first 2 years of life on: 


	
	
	
	
	Body mass index and risk of obesity at 5 and 10 years 


	
	
	
	Growth trajectories from infancy onwards
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	Sample findings from study
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	-
	specific characterization


	
	
	
	
	Days supply 
	–
	highly missing


	
	
	
	Start date minus end date 
	–
	low percent missing 
	–
	very different from the global 
	measure
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	One key takeaway 
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	a proxy variable for one study may not be suitable for another
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	Datamart administrators are typically not the ones using the data, so they 
	may not understand the impact of leaving things unaddressed
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	Clinicians will support changes in workflow (within reason) if there’s a benefit 
	to them 


	
	
	
	Goes beyond research 
	–
	precision medicine, analytics, etc.  (better care?)
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	Can we create a checklist as opposed to “we know it when we see it”?
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	Algorithm metrics:
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	measure
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	Data Quality metrics:


	•
	•
	•
	•
	completeness (missing rate)


	•
	•
	•
	accuracy/error rates (conformance to known data 
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