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High Level Overview of Optum Processes and Technologies for
Data Extraction

Data load and normalization into

Data Acquisition proprietary data model

Quality Analytics

Create secure data acquisition
pipeline- through VPN or secured
file transfer process (encrypted)

Ensure data flowing daily

Define expected standard file
formats based on data type (HL7,
Claims, etc.)

Reusable data extraction logic
based on experience with
multiple EMR/data warehouse
structures

© 2019 Optum, Inc. All rights reserved. Confidential property of Optum. Do not distribute or reproduce without express permission from Optum.




Optum Processes and Technologies for Data Extraction

Ensuring extraction of the most recent data from various data sources...

« Optum Analytics provides services under a Business Associate Agreement to our
customers

» Our Customers provide access to their data to support certain Health Care Operations
- Accurate and current data critical for Care Coordination activities
- Work together to ensure access and accuracy

®
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Optum Processes and Technologies for Data Curation

Data load and normalization into

Data Acquisition proprietary data model

Quality Analytics

Leverage industry standards
(Code sets) to normalize data as
a part of Extraction
Transformation Load process

Use Machine learning techniques
to normalize free-text data sets
from text fields or notes

Subject Matter Experts used for
Labs and Medication Mapping

Internal Tools and Machine
Learning processes developed to
ensure consistency in data
across all customers EMRs
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Optum Processes and Technologies for Data Curation

Provenance ldentification

* Analyze provider data stores (Multiple sources)
Locate candidate sources in the raw data
Characterize the data:

Variety of sources

Data type

Extent of population

Data quality

If multiple data sources for one element, compare data and specify provenance
cascade

Document provenance for future reference and verification review
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Optum Processes and Technologies for Data Curation

Normalization — highly dependent on data type

 Structured Data
Standard Terminology — use crosswalks
Custom codes — use regular expressions, semantic logic, machine learning techniques

* Unstructured Data —
requires extensive business requirement definition- NLP

Accuracy Verification during Mapping

« Structural testing concerns the format of data

- Semantic testing concerns the meaning of data

« Referential testing concerns the relationship between data

A
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Transforming Local Lab Result and Units to Normalized Values
Local Local : Normalized
Local Name Result Normal Range Units Mapped Name Mapped Unit Value
Prostate_ AN 0.33 (null) ng/mi Prostate Specific Antigen ng/mi 0.33
antigen
Albumin, serum 3848-5304 Albumin
Triglyceride 68 See lab report Triglycerides (TG) 68
C-reactive protein, See lab report C-reactive protein (CRP) @
serum
Thyroid stimulating ) w Thyroid stimulating
hormone 0.8 Ueaill - hormone (TSH) U
A
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Data Acquisition

Data load and normalization into
proprietary data model

> Quality Analytics

« Source to Target Mapping for
new data sources

* Analytical algorithms to validate
normalized data sets using
automated and semi-automated
methods

« Develop data integrity checking
processes run during initiation
and each monthly data refresh



Data Quality Verification: Using Automated Analytics

Volumetric Analysis

» High Level Volumetric: examine trends over time for each table to identify any gaps in the
data

* Mid Level Volumetric: examine trends over time of particular items of interest overall and
by source of data

— Volumes for specific lab tests, medication class

Linkage Reports: examine “joining” rates between the various tables to ensure consistency
in patient IDs and encounter IDs (where available) across the various data sources.

™
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Cynthia Senerchia
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COTA’s Approach to Data Curation



COTA transforms complex clinical data into Real World Data
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Aggregate Clinical, Genomic
and Financial Data Across
Cota’s Provider Network

Process Structured And
Unstructured Data Via Data
Enrichment Platform
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Stratify RWD By CNA To
Enable Comparison of

“Clinically Identical” Patients

Analytics to Drive
Insights Across The
Healthcare Ecosystem
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The Journey to Make COTA RWE

COTA RWE is derived via in-house technology that enables the collection and expression of
comprehensive patient data supported by source attribution.

Data Acquisition Abstraction Transformation Analytics and Products
and Intake Reporting
...breast cancer...
| _ER-_| _ .
-1 triple negative
| _PR-_|
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Event-Driven Patient Timeline
COTA's flexible model is designed to accommodate multiple similar facts over the entire patient timeline.

Real World
PATIENT Labs ECOG Outcomes
DIAGNOSED

LAST CHECK-IN

Date of Comorbidities Molecular Stage Treatment Toxicities Current Status
Diagnosis Markers Start and
and End Dates
Cancer Type
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Data Acquisition and Intake
Abstraction begins when new documents and patient data are received.

Data Source Examples File Type
Tabular data Tumor registry, utilization Character-delimited files
Data exported from one of the many reports, Bl reports, (CSV)

sources in the provider’'s system or claims and claims

from Payer.

EHR media Surgical Pathology Report, PDF, JPEG, TIFF

All files are scanned or created by the Visit notes

provider’s system.

Programmatic EHR messages ORU, ADTs, MDMs, RAS HL7, CCD, FHIR
Data generated in digital text format from
the provider’s system.
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Abstraction

Clinical experts use standard and controlled terminology to turn unstructured information to
structured data, which is then subject to robust review, rules, and quality assurance.

The Source Patient Facts
Pathology Report Interpreted Values

MRN 123, DISEASE

> MRN 123, ER NEGATIVE

g MRN 123, HER2 NEGATIVE

... triple negative ...
.. LVI ... .

q MRN 123, LYMPHOVASCULAR
INVASION PRESENT

’_
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Abstraction

Structured and semi-structured sources are leveraged wherever possible, and augment manual
abstraction, process optimization, and operational intelligence.

The Source The Team The Output
Tumor Registry Engineer + Clinical Abstractor Facts
CSV

Proprietary
scripts using
Fact

Custom

Mapping
Scripts

MRN 456, FACT 1

API

MRN 456, FACT 2
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Transformation

The ETL layer handles all medical calculations, roll-ups, and normalizations, and generates data that
powers COTA products and benchmarks.

: : Proprieta
Medical Calculations prietary Data Tables
Calculations
- Staging - CNA assignment - Staging
- Time Deltas and events for Kaplan-Meier - PHI scrubbing - Molecular testing
- Prognostic scoring systems - Progression - Labs
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Quality Assurance Overview

A multi-phase approach applying automated and human-driven activities is required to optimize and monitor
data quality.

Quality control at the point of data entry:

o Data validation (restricted ranges, realistic dates, control lists, no free text)

o Careful management of external data sources not entered by humans (SLAs,
mapping, testing, data validation)

. Upfront abstractor testing against gold standard

. Ongoing abstractor monitoring using randomized double-blind
abstraction and IRR measurement

. Programmatic checks for improbable scenarios

STRICTLY CONFIDENTIAL | ©2018 COTA INC. ALL RIGHTS RESERVED



The Role of Technology

Natural Language Processing (NLP) has great potential to help, but we are concerned about accuracy.

« Much of "what matters™ in oncology is found only in complex physician
narratives. NLP accuracy today is inadequate for these scenarios.

. Decisions regarding individual data elements are always made by humans
with appropriate training.

« We rely on an increasingly sophisticated “suggestion engine” to improve
human efficiency and accuracy.

« As accuracy improves, the suggestion engine will be compared against
humans and IRR calculated.

. Forindividual data element/source combinations that prove superior to
human abstractors, we can consider replacing human abstractors in the
future.
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The journey to real-world evidence

Patient-level Reliable
data in source evidence
system/schema




Desired attributes for reliable evidence

Desired Researcher Analysis
attribute

Replicable Same or Similar = Similar
different

Generalizable Same or = Similar
different

Robust Same or Same or = Similar
different different

Calibrated Similar

(controls) --- -




Minimum requirements to achieve reproducibility

Desired Researcher Analysis
attribute

Patient-level

Reliable

data in source evidence

system/schema

* Complete documented specification that fully describes all
data manipulations and statistical procedures

e Original source data, no staged intermediaries

* Full analysis code that executes end-to-end (from source to

results) without manual intervention




How a common data model + common analytics can
support reproducibility

Desired Researcher Analysis
attribute

Patient-level Reliable

data in source Patient- evidence

level data
in CDM

system/schema

* Use of common data model splits the journey into two
segments: 1) data standardization, 2) analysis execution

* ETL specification and source code can be developed and
evaluated separately from analysis design

* CDM creates opportunity for re-use of data step and

analysis step




ETL: Real world scenario

PharMetrics Plus

CLAIMS
claimno from_dt to_dt diagprc_ind Diag_admit
05917921689 | IPA333393946 1/5/2006 1/5/2006 1 41071 41071
LRx/Dx
MEDICAL_CLAIMS
ims_pat_nbr dt_of_service
95963982102 80445908 8/1/2012 0:00 680488 41071
German DA

4 real observational databases, all containing
db nt international_ international_ international_ t even . . .. . .
—COUNY  practice_num doctor_num patient_num 29°-2'-€Ven' BETgl Inpatlent admission for a patlent with a
diagnosis of ‘acute subendocardial infarction’
Diagnosis * Not a single table name the same...
e e PR+ Not a single variable name the same....
ns| © Different table structures (rows vs.

columns)
» Different conventions (with and without

decimal points)

Problem Events

GE GE6326 GE8784 GE46478747 20

gnosis_num

GE GE2397573 2397573 121.4

Ambulatory EMR

Problem
Patient_id_synth ___ Diag_dt lcd10_cd « Different coding schemes (ICD9 vs. ICD10)
271138 4/11/2013 1214

34



What does it mean to ETL to OMOP CDM?
Standardize structure and content

PharMetrics Plus
Inpatient Claims

claimno diagprc_ind Diag_admit
05917921689 IPA333393946 1/5/2006 1/5/2006 1 41071

Transform structure optimized for large-scale
analysis for clinical characterization, population-
level estimation, and patient-level prediction

PharMetrics Plus
CONDITION_OCCURRENCE

CONDITION_

CONDITION_ SOURCE_ Maintain provenance by preserving
START DATE VALUE CONDITION _TYPE CONCEPT _ID . .
= == = source values and source location in
05917921689 1/5/2006 41071|Inpatient claims - primary position sta nda I’d structure
05917921689 1/5/2006) 41071|Inpatient claims - 1st position

' Augment content using international vocabulary
standards that can be applied to any data source

PharMetrics Plus
CONDITION_OCCURRENCE

CONDITION_ CONDITION
CONDITION_SOURCE_ _SOURCE CONDITION

PERSON_ID START_DATEVALUE CONDITION _TYPE _CONCEPT_ID _CONCEPT_ID _CONCEPT_ID

1/5/2006] 41071|Inpatient claims - primary position | 44825429 444406

35



OMOP CDM = Standardized structure:
same tables, same fields, same datatypes,
same conventions across disparate sources

PharMetrics Plus

CLAIMS
claimno from_dt to_dt diagprc_ind Diag_admit
05917921689 | IPA333393946 1/5/2006 1/5/2006 1 41071 41071
LRx/Dx

IMEDICAL_CLAIMS

ims_pat_nbr dt_of_service
95963982102 80445908 8/1/20120:00 680488 41071

German DA
Problem Events
international_
age_at_event date_of_event diagnosis_nu
m

international_ international_ international_

db_country o octice_num doctor_num  patient_num

11/19/2014
GE GEB6326 GE8784 GE468478747 20 0:00 GE2397573

Diagnosis

diagnosis_conf|
idence

international_dia
gnosis_num

diagnosis_num | icd10_4_code = icd10_3_text

db_country

Non-ST elevation
(NSTEMI)
myocardial
GE GE2397573 2397573 1214 infarction Confirmed

Ambulatory EMR

Problem
Patient_id_synth Diag_dt lcd10_cd
271138 4/11/2013 1214

* Consistent structure optimized for large-
scale analysis

provenance

Structure preserves all source content and

PharMetrics Plus: CONDITION_OCCURRENCE

CONDITION
CONDITION_ _SOURCE_V
PERSON_ID  START_DATE ALUE  CONDITION_TYPE_CONCEPT_ID

157033702 1/5/2006 41071 |Inpatient claims - primary position
157033702 1/5/2006 41071 Inpatient claims - 1st position

LRX/DX: CONDITION_OCCURRENCE
CONDITION

CONDITION_ _SOURCE_V
PERSON_ID  START_DATE ALUE  CONDITION_TYPE_CONCEPT_ID

80445908 8/1/2012 41071 Primary Condition

German DA : CONDITION_OCCURRENCE
CONDITION

CONDITION_ _SOURCE_V
PERSON_ID  START_DATE ALUE  CONDITION_TYPE_CONCEPT_ID

46478747

11/19/2014 121.4 EHR problem list entry

Ambulatory EMR :
CONDITION_OCCURRENCE

CONDITION

CONDITION_ _SOURCE_V
PERSON_ID  START_DATE ALUE  CONDITION_TYPE_CONCEPT_ID

271138 4/11/2013 1214 Primary Condition




OMOP CDM = Standardized content:
common vocabularies across disparate
sources

PharMetrics Plus: CONDITION_OCCURRENCE
CONDITION CONDITION CONDITION

e Standardize across

_START _SOURCE CONDITION _TYPE _SOURCE CONDITION vocabularies to a
PERSON_ID DATE VALUE CONCEPT_ID CONCEPT_ID | _CONCEPT_ID
— = = - = = —= T — common referent
41071primary position | 44825421) standard

(ICD9/10->SNOMED)
| «  Source codes mapped
CONDITION into each domain
_CONCEPT_ID

standard so that now
you can talk across

German DA : CONDITION_OCCURRENCE different languages
CONDITION CONDITION CONDITION

CONDITION CONDITION CONDITION
_START _SOURCE CONDITION _TYPE _SOURCE
PERSON_ID _DATE _VALUE _CONCEPT_ID _CONCEPT_ID

41071|Primary Condition 4482542")

_START _SOURCE CONDITION _TYPE _SOURCE CONDITION o :
PERSON_ID _DATE _VALUE  _CONCEPT_ID _CONCEPT_ID | _CONCEPT_ID Standardize source

codes to be uniquely
defined across all

Ambulatory EMR : CONDITION_OCCURRENCE vocabularies

CONDITION CONDITION CONDITION * No more worries
_START _SOURCE CONDITION _TYPE =_SOURCE CONDITION b : .
PERSON_ID _DATE _VALUE _CONCEPT_ID _CONCEPT_ID |_CONCEPT_ID about tormatting or

271138 Primary Conditio 4557208 . code Over|ap

EHR problem list entry

6478747




ETL best practices

Create ETL specification design document to promote
transparency

Share ETL source code to enable reproducibility

ETL unit testing to improve concordance between specification
and implementation

Enable data quality exploration at all stages of analysis lifecycle
using standardized data characterization tools




Create ETL specification design document to
promote transparency

https://github.com/OHDSI/WhiteRabbit



https://github.com/OHDSI/WhiteRabbit

Share ETL source code to enable reproducibility

https://github.com/OHDSI/ETL-CDMBuilder



https://github.com/OHDSI/ETL-CDMBuilder

ETL unit testing to improve
concordance between specification and
implementation

http://www.ohdsi.org/web/wiki/doku.php?id=documentation:

so?tware:wHiteraBBit:test ?rameworE



http://www.ohdsi.org/web/wiki/doku.php?id=documentation:software:whiterabbit:test_framework

Enable data quality exploration at all
stages of analysis lifecycle using

standardized data characterization tools
B Achilies

OHDSI_Sample_Database
Conditions

Condition Prevalence

Treemap Table

https://github.com/OHDSI/Achilles



https://github.com/OHDSI/Achilles

The goal isn’t “data quality”,
it’s “evidence quality” so need to apply
a more holistic approach to validation

Validation: “the action of checking or
proving the accuracy of something”

Data : are the data completely Clinical: to what extent does
captured with plausible valuesin a the analysis conducted match
manner that is conformant to the clinical intention?

agreed structure and conventions?

Data Clinical
Validation @ Validation

Software @ Methods
Validation Validation

Statistical : do the estimates
generated in an analysis
measure what they purport to?

Software : does the software do
what it is expected to do?



Structuring the journey from source to a common
data model

Patient-fevel

. data in ETL test
data in source implement Common Data

system/schema Model

Patient-level ETL

Types of ‘validation’ required:
\ Data validation, software validation (ETL) /

f




Structuring the journey from a common data model
to evidence

Single study
Write Develop Execute Compile
Protocol code analysis result

Patient-level Real-time query

_ Reliable
data in

CDM

Develop Design Submit Review
app guery job result

evidence

Large-scale analytics

Develop Execute

app script

Types of ‘validation’ required:
\ Software validation (analytics), Clinical validation, Statistical validation /
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Data networks have different goals and needs

* Provide information about individuals, e.g., Health

information exchanges

* Exchange patient data for patient care at the point of care

* Need: real-time access, patient identity, minimal need for completeness or
standardization (sending notes to read)

* Provide information about groups, e.g., Sentinel

* Public health surveillance

Health services research

Clinical trial planning and enroliment

Prediction modeling

Regulatory decision-making and medical product efficacy

Need: size, fitness-for-use, methodology, data stability and standardization,
transparency, reproducibility
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All data models have same basic concepts

- Information about people
- Demographics (e.g., age, sex, race, ethnicity, residence)
 Other characteristics (e.g., disease and family history)

 Information about care documented during medical

encounters

- Standard vocabularies document care during health care encounters
- Vital signs, images, and other measurements
« Notes

- Patient reported information

- Within healthcare setting
- In community (e.g., social media, fitness trackers, geolocation)



All data models have same basic approach to

standardization

Unique Data Partner’s
source database structure

Data Partner’s data
transformed into Common
Data Model format
(every data refresh)

Transformation Program

50



Sentinel principles for data curation

* Data model should maximize user control and
transparency
* Retain original data elements and values
* Transform values only when necessary, e.g., sex, care setting

* Create phenotypes and derived variables as part of
analysis — analytic code documents all transformations

* Quality assessment for entire data set for every refresh

* Data Partner participation is essential to assure that
source data is appropriate for inclusion and use



Early binding versus late binding

* Sentinel data must be ready on demand - early binding

* Each data transformation is checked by operations team
- 1,000s of checks and 50+ data refreshes a year
 Checks for data model conformance, logic relationship,
trends, outlier clinical validity

* Sentinel’s early binding approach coupled with

- Late-binding data quality review driven by the question and
based on data and expert input

- Validated analytic tools with embedded data quality output
- Fitness-for-use is iterative process



Key questions

* Who is responsible for data curation?

* Who is responsible for assuring data fidelity between
data source and data model?

* Who is responsible for determining whether a dataset is
approved for use?
- For every refresh at every Data Partner?
- |Is there a way to assure and document that the approved
dataset is used for analysis?
- Do analytic tools use source data values or derived and
mapped values?




Unpacking Real-World Data Curation:
Principles and Best Practices to Support
ransparency and Quality
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Chief Medical Officer / Chief Scientific Officer & SVP - Oncology, Flatiron Health (a member of the Roche
Group)
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Data source and curation

Demographics

Pathology | Discharge Notes
Physician Notes

Structured
Data

EHR

e &
Unstructured -

BEIE] Common Data

' Database Linkage
Radiology Report

T T
i u|]|]|]

Hospital Reports




Longitudinal cancer-
specific registries with
30d recency & flexible

data models
2014 2015 2016

2017

[ +—Follicular Lymphoma (1Q 2019)

I Hcpatocellular Carcinoma
B Diffuse Large B-Cell Lymphoma
I \/|ctastatic Pancreatic Cancer
I Ovarian Cancer

I — Advanced Head and Neck Cancer
I — Small Cell Lung Cancer

BN Advanced Urothelial Carcinoma
B \lctastatic Prostate Cancer

I \dvanced Gastric / Esophageal / GEJ Cancer
B Chronic Lymphocytic Leukemia
Multiple Myeloma

Metastatic Renal Cell Carcinoma
Metastatic Colorectal Cancer
Metastatic Breast Cancer

Advanced Non-Small Cell Lung Cancer

Advanced Melanoma
2018

60
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Configurable Abstraction

Tissue Collection Site Section of PD-L1 Report

Result

(

Result

—
Lab Name

For every PD-1/PD-L1 test a patient
receives, Flatiron biomarker Data Model
captures:

Test status

Test result

Date biopsy collected

Date biopsy received by laboratory
Date result received by provider
Lab name

Sample type

Tissue collection site

Type of test (e.g., FISH)

Assay / kit (e.g., Dako 22C3)
Percent staining & staining intensity

61



Remaining study data is captured through
trial-specific notes and documents in the EHR

Example: Flatiron Note for Adverse Events

Example: Domains in an oncology
study with EHR data source

Demographics (DM)
Subject Visits (SV)
Con Meds (CM)
Exposure (EX)
-+ Adverse Events (AE)
Disposition (DS)

Med History (MH)

Protocol Deviations (DV)

I/E Criteria (IE)

Lab Test Results (LB)
Physical Exam (PE)

Vital Signs (VS)

Tumor ID (TU)

Response (RS)

Procedures (PR)

Subject Elements (SE)
Death (DD)

Reproductive (RP)
Healthcare Encounters (HO)

62



Configurable quality assurance & quality control

Centralized Controlled Environment

Upfront

Feasibility

—

Policies &
Procedures

N ——
—

Training & Testing

e

Ongoing

Auditing &
Monitoring

—_—

Performance
Management

- @
—

Review Panel

e

Dataset QA

Cohort QA

e

Data Alignment

N ——
—

Clinical Assertions

e

63




Asserting that this transformation is
done properly

Data quality Is Iin context



Undergoes surgery for early-

stage disease

Progresses on 1L, tested for PD-
L1 and
Tested for EGFR re-tested for EGFR
and ALK
@ ® @ ®
Diagnosed with I
Stage Il NSCLC Starts 1L therapy Death

Diagnostic events are a combination of clinical, pathological,

Develops metastatic
disease

Starts 2L therapy, deteriorates
and is hospitalized

radiological, & biomarker data - in context
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stage disease

Undergoes surgery for early-

Tested for EGFR
and ALK

Progresses on 1L, tested for PD-
L1 and
re-tested for EGFR

Diagnosed with

Stage Il NSCLC

Develops metastatic
disease

Starts 1L therapy Death

Starts 2L therapy, deteriorates
and is hospitalized
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stage disease

Undergoes surgery for early-

Tested for EGFR
and ALK

Progresses on 1L, tested for PD-
L1 and
re-tested for EGFR

Diagnosed with
Stage || NSCLC

Develops metastatic
disease Starts 2L therapy, deteriorates

Starts 1L therapy Death

and is hospitalized
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stage disease

Undergoes surgery for early-

Tested for EGFR
and ALK

Progresses on 1L, tested for
PD-L1 and

re-tested for EGFR

Diagnosed with
Stage || NSCLC

Time to progression is

Develops metastatic
disease

dependent on when patient is

evaluated

Starts 1L therapy Death

Starts 2L therapy, deteriorates
and is hospitalized

68



Analytic guidance provided with data deliverables - e.g.,
sensitivity analysis, clinical verification

e Deliver comprehensive analytic guide including:

Study Overview

Research Questions
Inclusion/Exclusion Criteria

Data Elements

Baseline Characteristics

Data Quality and Provenance

Data Freeze and Retention Process
Overview of Abstracted Variables Data Quality
Measure Inter-Rater Reliability
Interpreting Agreement
De-identification of Flatiron Data
Analytic Notes

69
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Data Verification via Patient Journey Visualizer

71
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Data Verification via Patient Journey Visualizer

4 )

Kadcyla
LVEF 45%

72
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Data Verification via Patient Journey Visualizer

Monitor LVEF over time

S

Hospitalizations: /

Discern if cardiac or cancer related

73
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Lingua Franca for Data Quality

Not all data elements are created equal

| 18 74



Document clinical data quality and completeness

Completeness of technology-enabled Accuracy of technology-enabled

abstraction abstraction

SERIES ARENEEE S C Example: Sites of metastases

Structured Flatiron data

Variable data only completeness Site of met

Inter-abstractor
agreement

Metastatic
diagnosis

Smoking status 0%’ 94% Brain 96%
Histology 37% 99%?2 Liver 92%

26% 100% Bone 97%

Stage 61% 95% Lung 94%

ALK results
(of those 9% 100%?3
tested)

EGFR results
(of those 99%?3
tested)




Example: Flatiron data completeness report
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Need a consistent approach to documenting quality of high
risk or high value variables

77



Validation of Oncology Endpoints

Face Validity

Feasibility & Quality

of Variables
(structured & abstracted)

Validity of Outputs

Data Quality & Validation Framework
Oncologist agreement with definition & approach
Regulator and other stakeholder agreement with definition & approach
Completeness of collected data
Inter-rater agreement on progression dates for duplicate abstracted patients
Qualitative feedback from abstractors reviewing the medical records
Likelihood of predicting a downstream event (e.g., overall survival)

Association between OS and PFS/TTP
o Patient-level correlation
o Responsiveness of endpoint to treatment effects



Evaluate data against a reference standard
E.g., gold standard = National Death Index
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Small cohorts

© Flatiron Health 2018



Confirmed to meet
NSCLC EDM
classification criteria™

27,729

Structured order
for a
BRAF inhibitor

History of NGS
testing

N =27,729

.

Free-text search
for
BRAF mutation

BRAF V600E
mutated
N = xxx

_

>1000

Treated with a
BRAF inhibitor

N = x N =x

Not treated with a
BRAF inhibitor




18 months



Source evidence: Radiology report Clinician confirmation: Visit note one week later

Unstructured records contain
crucial clinical context.
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Dan Riskin
Chief Executive Officer
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In this brief talk, we will drill down into issues of data validity

* Introduction
* What is data validity?
 How is data accuracy assessed?

« (Conclusion

The goal is a thoughtful discussion on data validity in EHR-based studies
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Who is speaking?

 Dan Riskin

» Successful serial entrepreneur with products benefiting millions of patients
« Adjunct Professor of Biomedical Informatics Research at Stanford
» Testified on 215t Century Cures Initiative

 \Verantos

« Silicon Valley firm providing advanced EHR-based RWE studies
« 3 of the top 10 biopharma firms are customers
« Supported by NIH and NSF

The goal is a thoughtful discussion on data validity in EHR-based studies
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Introduction
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What is data validity?



Study validity

What determines study validity?

A study is valid if the evidence is sufficient to make the
clinical assertion

Validity is not a new expectation for physicians, researchers, or FDA
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The changing face of RWE

Product franchises are adding EHR-based studies to their RWE strategy

Registry EHR
(Traditional model) (New model)

Benefits Controlled data collection Scale and power
Tailored information Flexibility in subgroups
Challenges Limited scale Data collected for clinical use
Limited flexibility Technically challenging

EHR-based studies represent the area of fastest growth in RWE
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Study validity

Study validity requires accuracy and generalizability

« Accuracy
* Accuracy must be measured
» Accuracy should be high enough to justify the clinical assertion

* Generalizability
« The demographics and disease burden must be measured

» These should adequately reflect characteristics of the target population

« Currently, regulators do not consistently require accuracy assessment in EHR-based studies, so this will
be the focus of the talk

Data accuracy and generalizability are required if assertions are made
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How Is data accuracy assessed



Disruptive changes in EHR-based studies

Past EHR-based approaches do not translate to regulatory-grade studies

e Current use cases
 Pharma uses purchased data sets for trial recruitment and marketing insight
» Clinical assertions are not made in these uses, so accuracy is hot measured
« Limitations in translating legacy data sets to regulatory-grade studies
« Purchased EHR structured data sets have no underlying narrative or chart, so accuracy cannot be determined
 When measured, these data sets have low cohort accuracy, with sensitivity < 50%
« There is known bias, skewing toward higher sensitivity for sicker patients
« What is not good enough?
* Not checking is not good enough
» 50% accuracy is not sufficient to justify a 10% difference in study arms

The industry must move past legacy data and tech to meet requirements
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The specificity fallacy

Some RWE firms report specificity but not sensitivity

« Why is specificity easier to measure than sensitivity?
 Example: A pancreas cancer study uses 300 patients out of a 1 million patient EHR
» The firm pulls the 300 charts from structured data and performs a chart abstraction to assess pancreas cancer
false positives
» The firm does not sample a portion of the million records to assess false negatives
» Specificity is calculated, but sensitivityis ignored
« Why does ignoring sensitivity matter?
» Sensitivity is where the error and bias resides
« There is known skew in EHR accuracy... Sicker patients have more visits and are more likely to be added to the
problem list
« With a skew toward sicker patients, conclusions may be wrong or non-applicable

The industry cannot be allowed to test what’s easy and ignore what’s hard
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Case study

How can a large biopharma firm run high quality RWE studies?

1. Firm X wanted to run a PCT and started by testing EHR cohort accuracy
1. Requires underlying chart
2. Requires willpower to actually check both specificity and sensitivity
2. Structured data accuracy was found to be insufficient for the assertion
1. Structured data alone had cohort accuracy of 61.4% (F1-score, blended Sn and Sp)

2. NLP alone brought cohort accuracy above 85%
1. E.g. “Admitted for r/o MI.”

3. NLP + additional Al brought accuracy to 95.3%
1. E.g. “Admitted for r/o MI. C/o chest pain. EKG revealed ST elev. Troponin elevated.”

3. After enhancement, cohort accuracy met success criteria
1. Support planned pragmatic clinical trial
2. Will submit with a data validity report that measures accuracy for all key cohorts

Setting a high bar will keep healthcare safe and encourage innovation
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Looking at data accuracy

What happens when we look at cohort accuracy?

EHR structured EHR unstructured

Hypercholesterolemia Recall: 55.1% Recall: 98.2%

Diabetes mellitus

Chronic kidney disease

Dementia

Precision 98.0%

Recall: 80.6%
Precision 97.9%

Recall: 40.8%
Precision 97.6%

Recall: 62.1%

Precision 99.4%

Recall: 97.0%
Precision 92.6%

Recall: 92.9%
Precision 97.9%

Recall: 93.1%

Precision 100.0% Precision 90.0%

If the FDA says data accuracy matters, firms will measure accuracy

98



Conclusion



Conclusion

Advanced RWE requires advanced validity assessment

 When a clinical assertion is made, validity must be assessed
« Validity should include accuracy and generalizability
« Accuracy must include both sensitivity and specificity

« If underlying data are insufficiently valid for the assertion, the data must be demonstrably enhanced or the
assertion limited

 Enhancement approaches include natural language processing, other Al-based approaches, and clinical
documentation improvement

Regulators should require accuracy assessment (sensitivity and specificity) for all key cohort for all
EHR-based studies
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Thank You

i dan.riskih@verantos.com

:

E www.verantos.com
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Study-specific data curation in PCORnet®

Keith Marsolo, PhD
Department of Population Health Sciences, Duke University School of Medicine

Distributed Research Network Operations Center (DRN OC)
PCORnet Coordinating Center
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Disclosures

Previously served as a consultant for Novartis

This work was supported through several Patient-Centered Outcomes Research
Institute (PCORI) Program Awards (CC2-Duke-2016;, ASP-1502-27079; OBS-1505-
30699; OBS-1505-30683). All statements are solely those of the speaker and do not
necessarily represent the views of PCORI, its Board of Governors or Methodology

Committee.



PCORnNet® embodies a “network of networks”
that harnesses the power of partnerships

9 2 1 A national
Clinical Research Health Plan Patient Partners Coordinating infrastructure for
Networks (CRNs) == Research Networks == =Z= Center == people-centered
(HPRNSs) clinical research
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PCORnNet® Data Strategy

Standardize data into a common data model

Ensure that data support the question (data curation)
= Foundational
= Study-specific

Operate a secure, distributed query infrastructure
= Develop re-usable tools to query the data
= Send questions to the data and only return required information

Learn by doing and repeat



Assessing foundational data quality — Data Curation

Purpose
= Evaluate data quality and fithess-for-use across a broad research portfolio

= Generate meaningful, actionable information for network partners, investigators and
other stakeholders

Resources

* |mplementation Guidance to accompany CDM specification
ETL Annotated Data Dictionary
Data quality checks

+ Conformance

» Completeness

* Plausibility

* Persistence
Data curation query packages
Analyses and reports o
Discussion Forums Coordinating Center oL

holds Discussion Forums; Coordinating Center

updates Implementation analyzes results and
Guidance; and updates solicits more information
Data Checks as needed
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Study-specific data curation

First challenge: convincing investigators that this step is even necessary
(even more difficult if Coordinating Center is not the one running the study)

Second challenge: what do to do with the results
= Address the issue & incorporate into the foundational curation process (preferred)
* Medication coding
« Data latency
= Consider proxy variables
« Days supply
= Leverage alternative data sources

 Collect data on events directly from patients to supplement CDM
(ADAPTABLE — out of scope for this talk)
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Medication coding

Information about the
medication ingredient,
strength, and dose
form is needed for

Implementation
Guidance developed to
establish the preferred
mapping strategy

Data Curation added a
data check to measure
adherence to the
guidance
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Incorporating medication coding into data curation

W Cycle 3

W Cycle 5

Note: all partners must pass this check
starting July 2019



Data latency

Latency / completeness of data
PCORnet

Office Office Query Date
Visit Visit *
Trial Rx Lab \ -~ -
Enrollment Filled Draw
No events?

Or just no data?

Questions:
= “How complete & up-to-date are the data we’re looking at?” (DSMB)
= “What’s the data censoring date for participants?” (Statistician)

Developed latency calculation & incorporated into data curation
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Data latency as part of data curation




Proxy variables — days supply

Study Aims: To evaluate the comparative effects of different types, timing, and amount
of antibiotics prescribed during the first 2 years of life on:

= Body mass index and risk of obesity at 5 and 10 years
= Growth trajectories from infancy onwards

Sample findings from study-specific characterization
= Days supply — highly missing
= Start date minus end date — low percent missing — very different from the global
measure

One key takeaway — a proxy variable for one study may not be suitable for another
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Open issues (one example)

Differentiating between data quality issues & normal practice variation

Missing labs or
practice variation?

)

Didn’t load lab into
CDM (probably)

)
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Next steps / recommendations

Need to stress importance of fixing data issues that can be resolved

= Datamart administrators are typically not the ones using the data, so they
may not understand the impact of leaving things unaddressed

Identify incentives that would improve data quality on the front end

= Clinicians will support changes in workflow (within reason) if there’s a benefit
to them

= Goes beyond research — precision medicine, analytics, etc. (better care?)

Define guidance for what it means to be “regulatory grade”
= Can we create a checklist as opposed to “we know it when we see it"?
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Linking Multiple Data Sources:
Considerations for Use Cases and

Quality



Data Linkage: The Indiana Network for
Patient Care (INPC)

Data Access & Use

Data Management

T+
i

Hospital

Exchange

Data Network
epository Applicatic

Outpatient RX

e

Physician Office Public Health

Ambulatory Centers

Public
Health

Researcher

Results delivery

Secure document transfer
Shared EMR
Credentialing

Eligibility checking

Results delivery

Secure document transfer
Shared EMR

CPOE

Credentialing

Eligibility checking

Results delivery

Surveillance

Reportable conditions
Results delivery
De-identified, longitudinal
clinical data

Secure document transfer
Quality Reporting

De-identified, longitudinal
clinical data (OMOP CDM, i2b2)
Subject Recruitment

Clinical Trials

@



Figure 7-1. Examples of Matching Scenarios Broken Down By Dimensions of
Workflow Timing and Human Supervision

Workflow Timing

Batch Mode Real Time
: .
o Substantial Reporting, Health C_are
[ Manual Research Enterprise
> Supervision (Hospitals)
a
3
7))
5 Little or No | o :4entified Health
g Manual Matchin Information
T Supervision 9 Exchange










Linkage Metrics

1. Algorithm metfrics:
« sensitivity (recall), PPV (precision), F-measure

2. Data Quality metrics:
« completeness (missing rate)

« accuracy/error rates (conformance to known data
requirements/business rules)

 discriminating power (various measures)

3. Business processes metrics
« Data validation methods
« Compliance with established process standards

How to compare across sites/regions?



Linking Multiple Data Sources:
Considerations for Use Cases and

Quality
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What we do

Assembling a more holistic view of the

1. Protect patient...
De-identify datasets to protect
patient privacy and reduce risk

2. Link
9 Connect matching patient records 000
c across datasets to increase data

completeness and dimensionality

3. Discover

Help institutions discover data sources
that augment their knowledge of a
population
...to expand the set of questions that

can be answered in healthcare



Secure, HIPAA-Compliant De-identification

e Datavant’s technology can be installed on-premise, meaning that we don’t need access to client’s data or
systems

* We work with clients to configure the de-identification rules required for a specific data layout and use
case, using Safe Harbor or the Expert Determination method to ensure compliance with HIPAA

Input data Configured template with rules Output data
John | Remove | Null
Smith | Remove | Null
Male | Pass through | Male
March 27, 1968 | Convert to birth year | 1/1/1968
5 Pine Street | Remove | Null
95401 Convert to 3-digit zip area 954
Create token from name, DOB and gender AA001

De-identification engine




Adding Anonymized Linking Tokens to Each Record

Token creation has two

steps: S N

Token Generation Process

Irreversible Hash Process Site-Specific Encryption

1. Hashing: Makes tokens

irreversible, securing users from P

employee or Business Associate -

regulatory violations Token structure
(defined in template)

2. Encryption: Makes tokens site- PHIin - - @#JSDFTsdf093s$#2s Sitetz)skr;dﬂc

specific, protecting users from a S””Ct“’('jed DI

partner’s security breach recor #Jsf%)sd@#FSDsd11IvO (in process only)
Datavant Master Seed + - @

Our tokenization process has been /AA0001

% cryptog.raph|_clally.-cert|f|ed as secure, and T :H::
our de-identification software produces N WV

datasets that have been certified to be in
compliance with HIPAA



Linking De-ldentified Data With Tokens

Connect patient records across multiple datasets without ever sharing PHI

« Because tokens are site-specific, they
cannot be matched across sites unless

they are transformed. Multiple sources sending data to recipient

* When both parties agree to exchange Source A Source B
data, Datavant enables a second piece of AR R Tinny A
software to convert tokens from one Ste-speoc
encryption key to another. token creation

Conversion to
destination tokens

 In this way, tokens from different sources _
can be converted into a common
encryption key to allow joining. NS ACO00T / N

BC00001

[ CC00001=CC00001 J

Destination C

* Once in a common key, tokens from the
different datasets are matched according Joining patient records without PHI
to each user’s needs.




Logic to Support Stringent AND Broad Matching

We recommend not picking a single token or token combination for matching logic, but to instead take
advantage of multiple matching options using a "drop through" or “waterfall” technique.

1. The most stringent set of tokens are
used in the first round to define a
match.

2. Any records matched in this round are
put aside, and only unmatched
records move to the next round.

This cycle is repeated using less and less
stringent matching logic over multiple
rounds.

Best matches are always made first, with
only a few rounds used for stringent
matching, and many rounds used for
broad matching.






Using Datavant’s software, companies can de-identify and tokenize patient records so that they can be linked
across disparate datasets.

Patient records can be linked based on token matches (when tokens are in the same site key). The quality of a
given match depends on the tokens used and on the specific matching logic.
Datavant has many different token types that are composed from different combinations of PII:

* Some designs are deterministic (using Social Security Number, for example)

* Most designs are probabilistic (based on a combination of non-unique fields such as: first name, last name,
DOB and gender)

Datavant recommends adding multiple tokens to each data file to:
* Increase the chances that de-identified datasets will share common tokens and be join-able
* Increase accuracy of matching by having more tokens with which to confirm a match result

* Allows clients to select matching stringency — from strict to broad — depending on their specific use case
and their sensitivity to either false positives or false negatives




@ DATAVANT
Sam Roosz

+1.765.490.9385
sam@datavant.com
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The Global Health Research Network

I LINKING IN PRACTICE

PRESENTED BY:

Steven Kundrot
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CROs @

Pharma Regulatory

Global health research network

Cloud-based platform enabling on-
demand access to real-world data and
analytic tools

Data sourced and continuously
refreshed from EMRs, Claims, PRO,
registries and unstructured sources

Patient Registries Data Partners

Path back to the patient via IRB and
Honest Broker

Healthcare Healthcare
Data is downloadable Organizations Organizations

. . Healthcare
Federated model & compliant with Organizations
international privacy standards

COPYRIGHT © 2019 TRINETX, INC. ALL RIGHTS RESERVED. CONFIDENTIAL




THE EVOLUTION OF TRINETX DATA

Patient Linking @

Combine [de-identified]

EHR

Diagnoses,
procedures,
medications, &
lab results.

Oncology &
Genomics

Tumor site,
morphology, &
biomarkers.
Genetic tests &
variants.

Natural Language
Processing

Extract clinical facts
from free text
notes.

Claims Data
Medical &

pharmacy claims.

Cost data.

data sets to create
longitudinal patient

records.
(EHR, Claims, PRO,
Registry ...)

COPYRIGHT © 2019 TRINETX, INC. ALL RIGHTS RESERVED. CONFIDENTIAL



LINKING: SOLUTION CONTEXT @

Implementation within the context of a federated, global network ...

KEY ASSUMPTIONS VENDOR SNAPSHOT
» Governance/privacy  Datavant/ UPK
* Broad applicability * Health Data Link
» Matching validity * Verato
 Performance and scale * Experian

* Health Verity

* Flexible implementation

Symphony Health

@ TriNeiX COPYRIGHT © 2019 TRINETX, INC. ALL RIGHTS RESERVED. CONFIDENTIAL



LINKING: ORCHESTRATION 39 Pary Keys oo L141)

HEALTHCARE ORGANIZATION

E pd ©

Create Patient Run TriNetX De-ldentified
Demographic File Key Generator Site-Specific Keys

Convert to
TriNetX Master Records
Keys

Healthcare Org. Copy of
Patient Data Linked Data

@ TriNeiX COPYRIGHT © 2019 TRINETX, INC. ALL RIGHTS RESERVED. CONFIDENTIAL



LINKING: GOVERNANCE @

ELIGIBLE COHORT AUTHORIZED FOR EXPORT ID
DAQQORODOQR® DAQQORODOQR®
DAQQORQDOQQO® DAQQORQDOQQO®
DAQOQDOQQ® DAQORODOQQ®
DAQQORQDOQQO® DAQQORQDOQQO®
DO ®OQ QW DO
DOAOQQRQRRO®

DOAOQQOQRDO®

SOURCE OF ELIGIBILITY

® Healthcare Organization Data

® Linked Claims Data

@ Linked Patient Reported Outcomes Data



LINKING: RESULTS (143)

|
HCO Total Patients Linked Patients  Linking % e Matches based on 99% probability
HCO 1 1,971,715 1,322,343 67% ) )
HCO 2 918,569 693,199 75095 © Potential for pool and depth/breadth increase

Orphan  Orphan Patients .~ % Patient Pool IR Orphan patient: a patient w/o any facts before linking
Pati R d : [ d : :
atients ecovere ncrease Patlent pOOI Increased

HCO 1 928,257 462,536 50% 44%

HCO 2 3,701 1,017 27% 0.1%

HCO Death  LinkedDeath ~ Death  Depth of deceased knowledge increased

DELE] Data Addition
HCO 1 144,264 309,462 271,686 188%
HCO 2 12,615 36,134 25,978 206%

» Decease pool increased

HCO Facts  VCOFactsfor  Newlinked  Depth, Breadth + Potential for clinical depth/breadth increase
Linked Patients Facts Potential Increase . . ) )
HCO 1 1,046,431,944 845,492,762 326,163,485 s9% - Potential for longitudinal increase
HCO2 299,453,541 241,722,712 106,539,304 44%

@ TriNeI'x COPYRIGHT © 2019 TRINETX, INC. ALL RIGHTS RESERVED. CONFIDENTIAL



LINKING: RESULTS (144)

RA # with % with
Patients 5yrs+ span  5yrs+ span
Unenriched 3,540 1,650 47%
Enriched 4,160 3,220 77%

* Increase in completeness
* Increase in longitudinally

@ TriNeiX COPYRIGHT © 2019 TRINETX, INC. ALL RIGHTS RESERVED. CONFIDENTIAL



LINKING: WHAT’S NEXT @

HCOs Linked Patients

* Linking throughout our network HCO 1. HCO 2 2 035
HCO 1,HCO 2,HCO 3 34
* On-going assessment of linking e

 Quality of matching
» Depth/breadth significance

« Development of standard metrics
« Transparent to community

@ TriNeiX COPYRIGHT © 2019 TRINETX, INC. ALL RIGHTS RESERVED. CONFIDENTIAL



857.285.6037

THANK YOU!

125 Cambridgepark Drive, Suite 500
Cambridge, MA 02140 USA

@

join@trinetx.com

&

trinetx.com
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January 22, 2019

Session |V: Documentation for Traceability and
Auditing

Amy Abernethy, MD, PhD

Chief Medical Officer / Chief Scientific Officer & SVP - Oncology, Flatiron Health (a member of the Roche
Group)

Adjunct Professor of Medicine, Duke University School of Medicine
@dramyabernethy ¢ ¢ amy@flatiron.com



Undergoes surgery for early-
stage disease

Progresses on 1L, tested for PD-
L1 and
Tested for EGFR re-tested for EGFR
and ALK
@ ® ® ®
Diagnosed with
Stage Il NSCLC Starts 1L therapy Death
Develops metastatic
disease Starts 2L therapy, deteriorates
and is hospitalized

Documentation of source, quality and
provenance.
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A comprehensive view of the patient journey

Undergoes surgery

Progresses on
adjuvant therapy

Progresses on 1L

............ ® ® >
Patient
deteriorates
D :Starts 1L therapy leading to
Diagnosed with | hospitalization /
GBM : death
""""""""""""" ' Starts on 2L |
Receives Medical admins / orders
Date of surgery adjuvant . 5
therapy Concomitant meds - - p——
Date of death
Duration of therapy Date of death
Date of death
Consensus date of
Medical admins / orders death
discontinuation : Medical admins / orders
Race Concomitant meds : :
Insurance Duration of therapy Date of met Dx Date of progression (with Concomitant meds
scan or lab result to confirm
Smoking Status Sites of metastases| D:ratlon of thfra /
""""" Site of Disease
Comorbidities Response

Structured EMR data Unstructured EMR data External mortality data jll Combined / derived data

*Relative timing not exact
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Starts 2L therapy, deteriorates !
and is hospitalized

Stage at Dx 2L Treatment Date of Death
Jane Doe

EGFR-, ALK-, PD-L1- nivolumab 2017-03-08 2017-04-12
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Abstraction Details

> Abstracted by Sue Smith on 4/30/17 at 10:10am
> Physician notes and scan interpretation reviewed
> Medical record from West Florida Cancer Clinic

Quiality of Progression abstraction

> Completeness: 99%

> Sue Smith is 96% accurate at last testing
> Inter-abstractor agreement: 97%

> Kappa: 0.93

> Audit trail for any changes

Stage at > Dataset freeze and storage

‘ Jane Doe ‘ Il EGFR-, ALK-, PD-L1- nivolumab 2017-03-08 2017-04-12
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Meta-characteristics of RWD and RWE
Regulatory grade RWE, a potential checklist

Clinical Depth
Data granularity to enable appropriate interpretation
and contextualization of patient information.

Completeness

Inclusion of both structured and unstructured
information supports a thorough understanding of
patient clinical experience.

Longitudinal Follow-up
Ability to review treatment history and track patient
journey going forward over time.

Quality Monitoring
Systematic processes implemented to ensure data
accuracy and quality.

[]

Timeliness / Recency
Timely monitoring of treatment patterns and trends
in the market to derive relevant insights.

Scalability
Efficient processing of information with data model
that evolves with standard of care.

Generalizability
Representativeness of the data cohorts to the
broader patient population.

Complete Provenance
Robust traceability throughout the chain of
evidence.
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Data documentation in the Aetion
Evidence Platform

Jeremy Rassen, Sc.D.
President & Chief Science Officer
Aetion, Inc.

January 2019



The platform approach

At Aetion, we take a platform approach that combines:

This allows for testing, validation, and full

It also creates a for documenting/archiving/auditing data transformations
and provenance.

161 Copyright Aetion, Inc. Confidential



Stage 1 validation & reporting

Verify: do the loaded data match the provided data?

Part 1: rules-based "sanity checks”
* Do the imported datasets meet technical expectations?

Part 2: semi-automated validation
* Do the imported datasets meet scientific expectations?

162 Copyright Aetion, Inc. Confidential



Stage 2 reporting & versioning

As data are used, document each and every step.

Part 1: archived, auditable reporting

* Provide natural language reporting on how data are put to use
In a study (e.g., data element -> measurement)

Part 2. comprehensive versioning
* Provide traceable versioning (provenance and history) of each

measurement; taken together, becomes a full catalog of how a
study came to be

||||||||||||||||||||||||||||||||||




“Stage 3" and beyond

Continue to document study beyond the data steps

« Epidemiological assumptions applied (eg, exposure grace
period)

 Statistical methods used

* Relevant literature

* Results

164 Copyright Aetion, Inc. Confidential



Ae-ti-on

From aetiology (Greek):

The cause of diseases and disorders; the investigation or
attribution of the cause or reason for something.

165 Copyright Aetion, Inc. Confidential
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Systematic Approach to Managing Big Data
-

1802775327-v2/0October2018 ©Cerner Corporation. All rights reserved.



Data Integration
-

Data onboarding into Healthelntent

* Data sources, data sets
- Data source: A software system that sends data to Healthelntent. This is typically a vendor (i.e. BCBS)

- Data Set: Set of data file(s) from a Data Source that can be mapped to a data model in Healthelntent
(ie. medical claims, results, medications, demographics, allergies)

* Many formats supported: HL7, X12, CCD, XML, CSV flat files

* File Frequency
* how often will new data be received/extracted and uploaded to Healthelntent

1802775327-v2/0October2018 ©Cerner Corporation. All rights reserved. 169



Loading Multiple Data Sources

Non-Cerner Data Source

G OBIR =

Data Sample File Discovery Structural Ref Record
Source “Vetting” Mapping Standard-
Strategy ization

Data Vetting:

Data Vetting is the process of analyzing the

raw data files for content, format, and

consistency before we on-board into

Healthelntent

« This process requires collaborating
sessions between Cerner, Client and
Vendor and can take a few weeks to
complete.

1802775327-v2/October2018 ©Cerner Corporation. All rights reserved. 170



Reconcile records to a single source of truth
-

John Doe A
SSN' Jon Doe B

Addr, SSN||  Jane Doe C
Lene
Addre  SSN 111-22-2345

Hosg| Lene:
Address:100 main,

Clinic Lenexa, KS 66215

Hospital B

|dentify like- reference
records

1802775327-v2/October2018 ©Cerner Corporation. All rights reserved.

EID 2468
Record ID A Record ID B
)

SSN First name Phone
DOB Last name

Address Race Alias
Gender Ethnicity

No link |

SN 111-22-1234 SN 111-22-1234
DOB 11/30/75 11/30/75

100 Main, Lenexa, KS 100 Main, Lenexa, KS

Assign unique EID
number to linked
records

Manual | Auto link

Determine similarity
score to confirm
records match
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Organize data into concepts

L2y Aspirin (Multum d00170)

Medication
LOI NC ICD-10 AIIergies ?as;)lierin 300 mg oral delayed release
3 Medications e
: | yer
\De 10D &l
MEDCIN Spn

Lab results Vitals aspirin
Aspirin

aspirin 300 mg oral tablet

1802775327-v2/0October2018 ©Cerner Corporation. All rights reserved.

Date

3/24/2014

10/17/201
3

Source

Westwatch Bay

Baseline East

9/23/Mar 13, B@4@atch Bay

4/23/2013
2/18/2013
5/14/2012
6/20/2011

Get Well Now
Westwatch Bay
Baseline East
Get Well Now
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Provenance Tracking

* Provenance definition

* According to HL7 FHIR specification, provenance is a record that describes entities and processes
involved In producing and delivering or otherwise influencing that resource. Provenance provides a
critical foundation for assessing authenticity, enabling trust, and allowing reproducibility. Provenance
assertions are a form of contextual metadata. Provenance indicates clinical significance in terms of
confidence in authenticity, reliability, and trustworthiness, integrity, and stage in lifecycle, all of which
may impact security, privacy, and trust policies.

* Granularity of the entities — device, individual, institution
* Documents versus data

* Provenance complexities " ,i\ o0 °”
* Individual
* Institution/Organization

« Multiple facilities D - .T% o.os.
- bl LA S —
* Multiple EHR domains ° o ° I—. U
LK SO = 3,
i 5

* Non-EHR systems
* Multiple source inference R
* Aggregation entities — e.g. HIEs 'ﬁ‘ .
* Intermediaries and networks Iﬁ\
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	Quality control at the point of data entry:
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	Data validation (restricted ranges, realistic dates, control lists, no free text)
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	Careful management of external data sources not entered by humans (SLAs, 
	mapping, testing, data validation)



	●
	●
	●
	Upfront abstractor testing against gold standard


	●
	●
	●
	Ongoing abstractor monitoring using randomized double
	-
	blind 
	abstraction and IRR measurement


	●
	●
	●
	Programmatic checks for improbable scenarios




	Quality Assurance Overview
	Quality Assurance Overview
	Quality Assurance Overview


	A multi
	A multi
	A multi
	-
	phase approach applying automated and human
	-
	driven activities is required to optimize and monitor 
	data quality.



	Slide
	Span
	STRICTLY CONFIDENTIAL   |   ©201
	STRICTLY CONFIDENTIAL   |   ©201
	STRICTLY CONFIDENTIAL   |   ©201
	8
	COTA INC.  ALL RIGHTS RESERVED


	●
	●
	●
	●
	●
	Much of “what matters” in oncology is found only in complex physician 
	narratives. NLP accuracy today is inadequate for these scenarios.
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	Decisions regarding individual data elements are always made by humans 
	with appropriate training.
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	We rely on an increasingly sophisticated “suggestion engine” to improve 
	human efficiency and accuracy.
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	As accuracy improves, the suggestion engine will be compared against 
	humans and IRR calculated.


	●
	●
	●
	For individual data element/source combinations that prove superior to 
	human abstractors, we can consider replacing human abstractors in the 
	future.
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	Data granularity to enable appropriate interpretation 
	and contextualization of patient information.

	Completeness
	Completeness
	Inclusion of both structured and unstructured 
	information supports a thorough understanding of 
	patient clinical experience.

	Longitudinal Follow
	Longitudinal Follow
	-
	up
	Ability to review treatment history and track patient 
	journey going forward over time.

	Quality Monitoring
	Quality Monitoring
	Systematic processes implemented to ensure data 
	accuracy and quality.
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	Timely monitoring of treatment patterns and trends 
	in the market to derive relevant insights.
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	Scalability
	Efficient processing of information with data model 
	that evolves with standard of care.

	Generalizability
	Generalizability
	Representativeness of the data cohorts to the 
	broader patient population.

	Complete Provenance
	Complete Provenance
	Robust traceability throughout the chain of 
	evidence.
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	At Aetion, we take a 
	platform
	approach that combines:
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	•
	•
	•
	Data ingestion


	•
	•
	•
	Data storage


	•
	•
	•
	Data measurement


	•
	•
	•
	Analytic workflows
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	Provide 
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	> measurement)
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	Results
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	sets
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	Data source:
	A software system that sends data to HealtheIntent.  This is typically a vendor (i.e. BCBS)
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	•
	Data Set: Set of data file(s) from a Data Source that can be mapped to a data model in HealtheIntent 
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	Data Vetting is the process of analyzing the 
	Data Vetting is the process of analyzing the 
	raw data files for content, format, and 
	consistency before we on
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	board into 
	HealtheIntent

	•
	•
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	•
	This process requires collaborating 
	sessions between Cerner, Client and 
	Vendor and can take a few weeks to 
	complete.
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	According to HL7 FHIR specification, provenance is a record that describes entities and processes 
	involved in producing and delivering or otherwise influencing that resource. Provenance provides a 
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	assertions are a form of contextual metadata. Provenance indicates clinical significance in terms of 
	confidence in authenticity, reliability, and trustworthiness, integrity, and stage in lifecycle, all of which 
	may impact security, privacy, and trust policies.
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