Unpacking Real-World Data Curation: Principles and Best Practices to Support Transparency and Quality

Duke-Robert J. Margolis, MD, Center for Health Policy 1201 Pennsylvania Ave, NW, Suite 500, Washington, DC 20004 January 22, 2019

Duke MARGOLIS CENTER

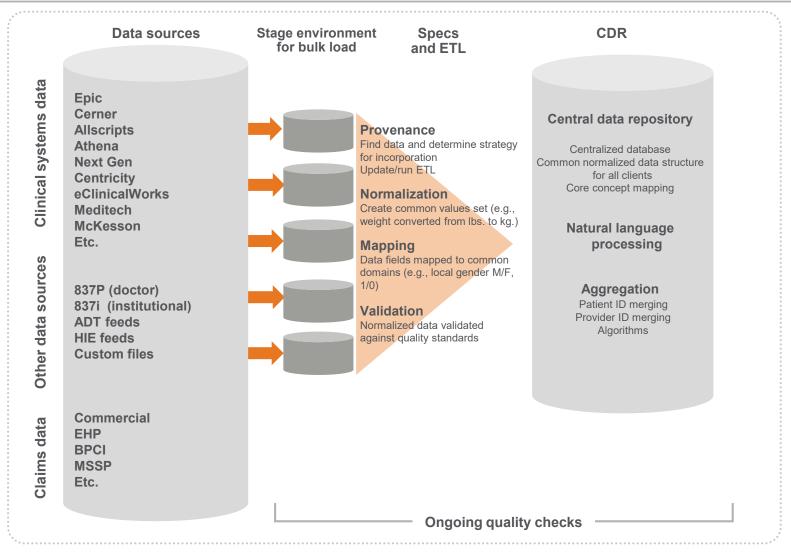
Welcome and Introductions

FDA Opening Remarks

Session I: Transforming Raw Data into Research-Ready Data

Duke | MARGOLIS CENTER

Digital Research Network


Patient-centered. Research ready.

Unpacking Real-World Data Curation: Principles and Best Practices to Support Transparency and Quality Session I: Transforming Raw Data into Research-Ready Data January 22, 2019

Optum 'Data Factory' High Level Overview

High Level Overview of Optum Processes and Technologies for Data Extraction

Data Acquisition	Data load and normalization into proprietary data model	Quality Analytics
 Create secure data acquisition pipeline- through VPN or secured file transfer process (encrypted) 		
 Ensure data flowing daily 		
 Define expected standard file formats based on data type (HL7, Claims, etc.) 		
 Reusable data extraction logic based on experience with multiple EMR/data warehouse structures 		

Optum Processes and Technologies for Data Extraction

Ensuring extraction of the most recent data from various data sources...

- Optum Analytics provides services under a Business Associate Agreement to our customers
- Our Customers provide access to their data to support certain Health Care Operations
 - Accurate and current data critical for Care Coordination activities
 - Work together to ensure access and accuracy

8

Optum Processes and Technologies for Data Curation

Data Acquisition	Data load and normalization into proprietary data model	Quality Analytics
	 Leverage industry standards (Code sets) to normalize data as a part of Extraction Transformation Load process Use Machine learning techniques to normalize free-text data sets from text fields or notes Subject Matter Experts used for Labs and Medication Mapping Internal Tools and Machine Learning processes developed to ensure consistency in data across all customers EMRs 	

Optum Processes and Technologies for Data Curation

Provenance Identification

- Analyze provider data stores (Multiple sources)
- Locate candidate sources in the raw data
- Characterize the data:
 - Variety of sources
 - Data type
 - Extent of population
 - Data quality
- If multiple data sources for one element, compare data and specify provenance cascade
- Document provenance for future reference and verification review

Optum Processes and Technologies for Data Curation

Normalization – highly dependent on data type

Structured Data

Standard Terminology – use crosswalks

Custom codes – use regular expressions, semantic logic, machine learning techniques

Unstructured Data –

requires extensive business requirement definition- NLP

Accuracy Verification during Mapping

- Structural testing concerns the format of data
- Semantic testing concerns the meaning of data
- Referential testing concerns the relationship between data

Transforming Local Lab Result and Units to Normalized Values

Local Name	Local Result	Normal Range	Local Units	Mapped Name	Mapped Unit	Normalized Value
Prostate specific antigen	0.33	(null)	ng/ml	Prostate Specific Antigen	ng/ml	0.33
Albumin, serum	3630	3848-5304	mg/dl	Albumin	g/dl	3.63
Triglyceride	68	See lab report	(no units)	Triglycerides (TG)	mg/dl	68
C-reactive protein, serum	0.12	See lab report	mg/dl	C-reactive protein (CRP)	mg/L	1.2
Thyroid stimulating hormone	0.8	0.5-6.0	miu/l	Thyroid stimulating hormone (TSH)	uu/ml	0.8

High Level Overview of Optum Processes and Technologies for Data Extraction

Data Acquisition	Data load and normalization into proprietary data model	Quality Analytics
		 Source to Target Mapping for new data sources
		 Analytical algorithms to validate normalized data sets using automated and semi-automated methods
		 Develop data integrity checking processes run during initiation and each monthly data refresh

Data Quality Verification: Using Automated Analytics

Volumetric Analysis

- High Level Volumetric: examine trends over time for <u>each table</u> to identify any gaps in the data
- Mid Level Volumetric: examine trends over time of <u>particular items of interest</u> overall and by source of data
 - Volumes for specific lab tests, medication class

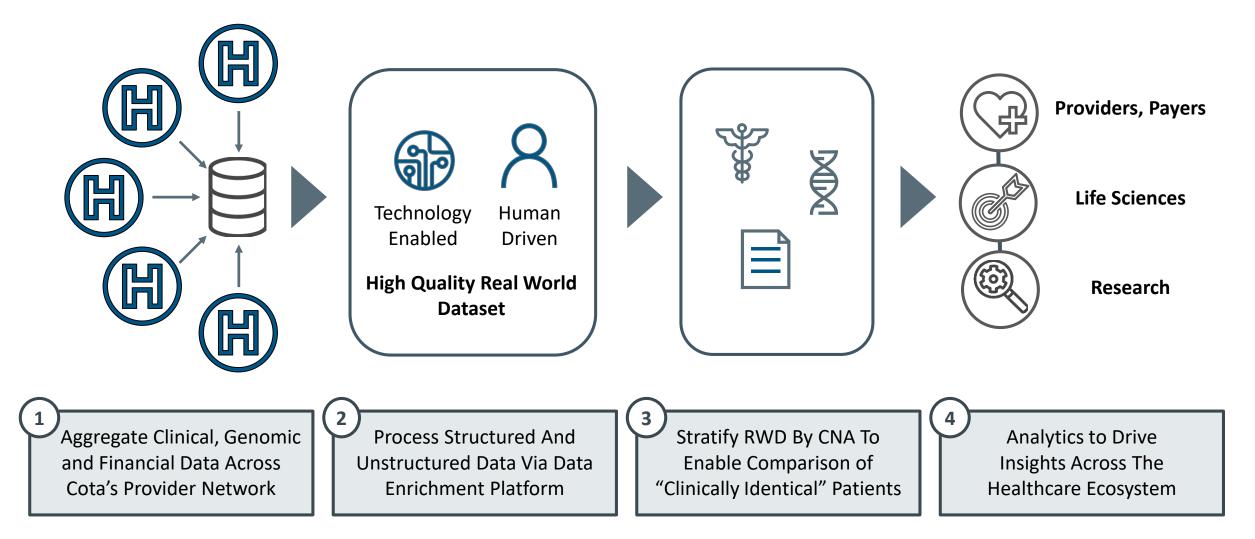
Linkage Reports: <u>examine "joining" rates</u> between the various tables to ensure consistency in patient IDs and encounter IDs (where available) across the various data sources.

Thank you

Cynthia Senerchia Vice President, Clinical Operations Digital Research Network

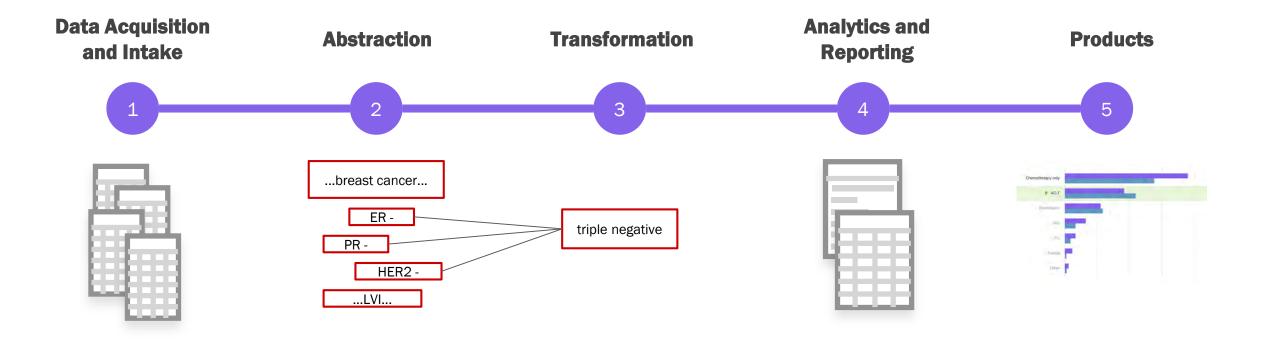
Session I: Transforming Raw Data into Research-Ready Data

Duke MARGOLIS CENTER


COTA

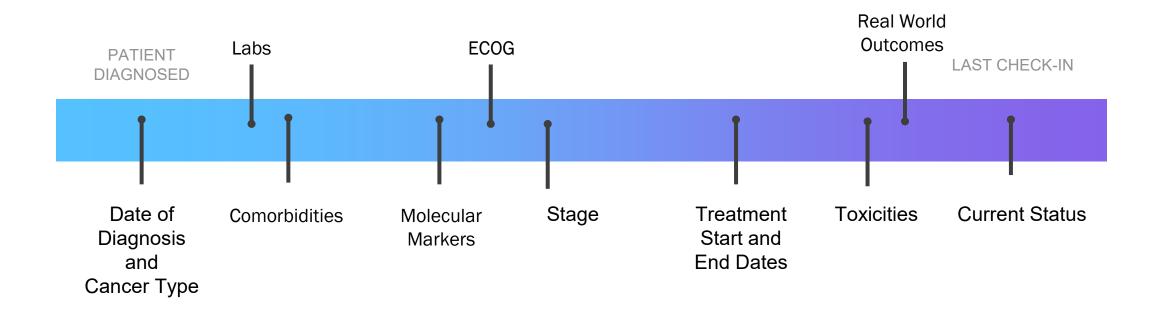
COTA's Approach to Data Curation

COTAHEALTHCARE.COM



COTA transforms complex clinical data into Real World Data

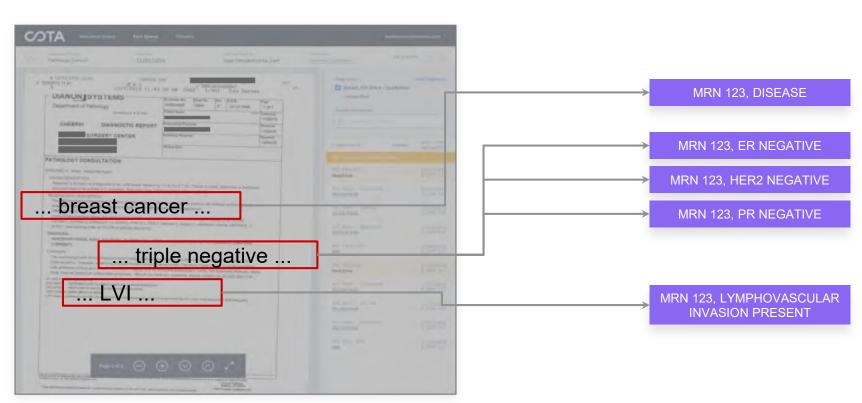
The Journey to Make COTA RWE


COTA RWE is derived via in-house technology that enables the collection and expression of comprehensive patient data supported by source attribution.

COTA STRICTLY CONFIDENTIAL | ©2018 COTA INC. ALL RIGHTS RESERVED

Event-Driven Patient Timeline

COTA's flexible model is designed to accommodate multiple similar facts over the entire patient timeline.

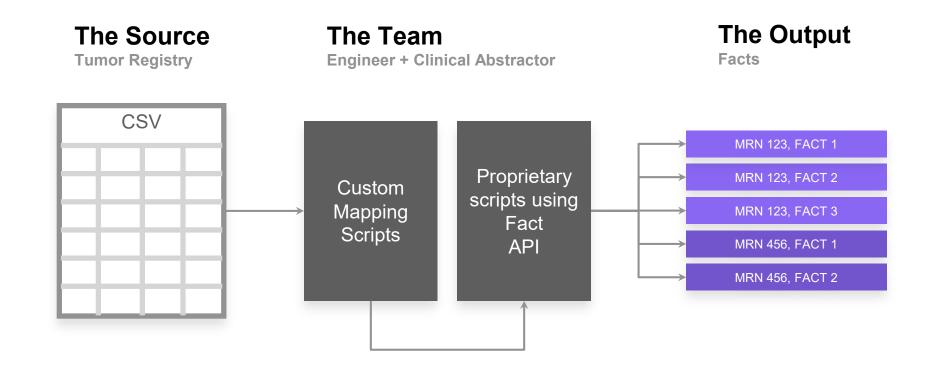

Data Acquisition and Intake

Abstraction begins when new documents and patient data are received.

Data Source	Examples	File Type
<u>Tabular data</u> Data exported from one of the many sources in the provider's system or claims from Payer.	Tumor registry, utilization reports, BI reports, and claims	Character-delimited files (CSV)
EHR media All files are scanned or created by the provider's system.	Surgical Pathology Report, Visit notes	PDF, JPEG, TIFF
Programmatic EHR messages Data generated in digital text format from the provider's system.	ORU, ADTs, MDMs, RAS	HL7, CCD, FHIR

Abstraction

Clinical experts use standard and controlled terminology to turn unstructured information to structured data, which is then subject to robust review, rules, and quality assurance.


The Source Pathology Report

Interpreted Values

Patient Facts

Abstraction

Structured and semi-structured sources are leveraged wherever possible, and augment manual abstraction, process optimization, and operational intelligence.

Transformation

The ETL layer handles all medical calculations, roll-ups, and normalizations, and generates data that powers COTA products and benchmarks.

Medical Calculations	Proprietary Calculations	Data Tables
 Staging Time Deltas and events for Kaplan-Meier Prognostic scoring systems 	 CNA assignment PHI scrubbing Progression 	 Staging Molecular testing Labs

Quality Assurance Overview

A multi-phase approach applying automated and human-driven activities is required to optimize and monitor data quality.

- Quality control at the point of data entry:
 - Data validation (restricted ranges, realistic dates, control lists, no free text)
 - Careful management of external data sources not entered by humans (SLAs, mapping, testing, data validation)
- Upfront abstractor testing against gold standard
- Ongoing abstractor monitoring using randomized double-blind abstraction and IRR measurement
- Programmatic checks for improbable scenarios

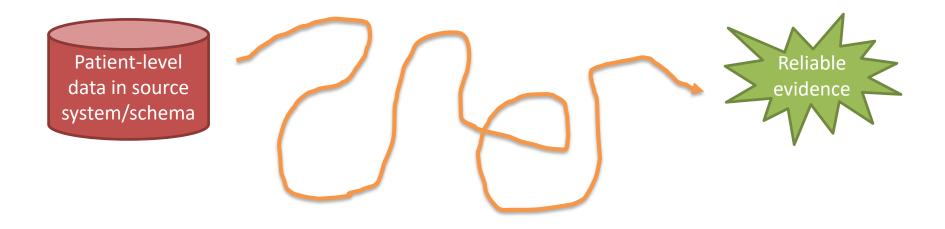
The Role of Technology

Natural Language Processing (NLP) has great potential to help, but we are concerned about accuracy.

- Much of "what matters" in oncology is found only in complex physician narratives. NLP accuracy today is inadequate for these scenarios.
- Decisions regarding individual data elements are always made by humans with appropriate training.
- We rely on an increasingly sophisticated "suggestion engine" to improve human efficiency and accuracy.
- As accuracy improves, the suggestion engine will be compared against humans and IRR calculated.
- For individual data element/source combinations that prove superior to human abstractors, we can consider replacing human abstractors in the future.

Session I: Transforming Raw Data into Research-Ready Data

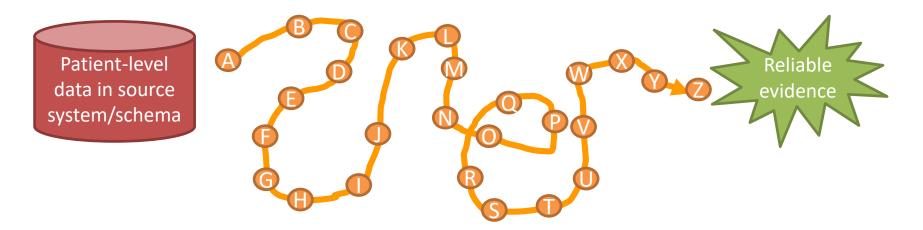
Duke | MARGOLIS CENTER for Health Policy



Unpacking Real-World Data Curation: Principles and Best Practices to Support Transparency and Quality

> Patrick Ryan, PhD Janssen Research and Development Columbia University Medical Center

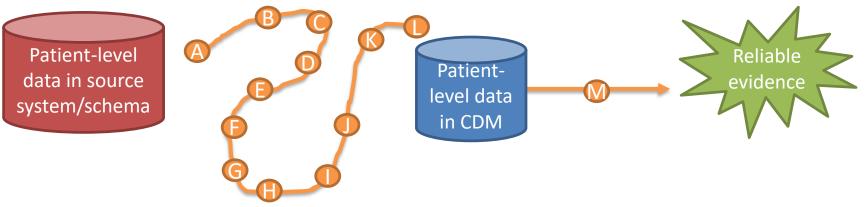
The journey to real-world evidence


Desired attributes for reliable evidence

Desired attribute	Question	Researcher	Data	Analysis		Result
Repeatable	Identical	Identical	Identical	Identical	=	Identical
Reproducible	Identical	Different	Identical	Identical	=	Identical
Replicable	Identical	Same or different	Similar	Identical	=	Similar
Generalizable	Identical	Same or different	Different	Identical	=	Similar
Robust	Identical	Same or different	Same or different	Different	=	Similar
Calibrated	Similar (controls)	Identical	Identical	Identical	=	Statistically consistent

Minimum requirements to achieve reproducibility

Desired attribute	Question	Researcher	Data	Analysis		Result
Reproducible	Identical	Different	Identical	Identical	=	Identical


- Complete documented specification that fully describes all data manipulations and statistical procedures
- Original source data, no staged intermediaries
- Full analysis code that executes end-to-end (from source to results) without manual intervention

One-time Repeated

How a common data model + common analytics can support reproducibility

Desired attribute	Question	Researcher	Data	Analysis		Result
Reproducible	Identical	Different	Identical	Identical	=	Identical

- Use of common data model splits the journey into two segments: 1) data standardization, 2) analysis execution
- ETL specification and source code can be developed and evaluated separately from analysis design
- CDM creates opportunity for re-use of data step and analysis step

One-time Repeated

ETL: Real world scenario

PharMetrics Plus

pat_id	claimno	from_dt	to_dt	diagprc_ind	Diag_admit	diag1			
05917921689	IPA333393946	1/5/2006	1/5/2006	1	41071	41071			

LRx/Dx

-- - -- --

MEDICAL CLAIMS

md_clm_id	ims_pat_nbr	dt_of_service	rxer_id	diag_cd
95963982102	80445908	8/1/2012 0:00	680488	41071

German DA

Problem Events							
db_country	international_ practice_num	international_ doctor_num	international_ patient_num	age_at_event			
GE	GE6326	GE8784	GE46478747	20			
Disersois							

Diagnosis

db_country	international_dia gnosis_num	diagnosis_num	icd10_4_code	i
				N (NS
GE	GE2397573	2397573	l21.4	

Λm	hul	atory	EVID
АШ	มนเ	atury	CIVIN

Problem

Patient_id_synth	Diag_dt	lcd10_cd				
271138	4/11/2013	1214				

4 real observational databases, all containing an inpatient admission for a patient with a diagnosis of 'acute subendocardial infarction'

- Not a single table name the same...
- Not a single variable name the same....
- Different table structures (rows vs. columns)
- Different conventions (with and without decimal points)
- Different coding schemes (ICD9 vs. ICD10)

What does it mean to ETL to OMOP CDM? Standardize **structure** and **content**

PharMetrics Plus

	pat_id	claimno	from_dt	to_dt	diagprc_ind	Diag_admit		
	05917921689	IPA333393946	1/5/2006	1/5/2006	1	41071		

Transform structure optimized for large-scale analysis for clinical characterization, populationlevel estimation, and patient-level prediction

Augment content using international vocabulary

standards that can be applied to any data source

PharMetrics Plus

CONDITION_OCCURRENCE

		CONDITION_ SOURCE_ VALUE	CONDITION_TYPE_CONCEPT_ID
05917921689	1/5/2006		Inpatient claims - primary position
05917921689	1/5/2006	41071	Inpatient claims - 1st position

Maintain provenance by preserving source values and source location in standard structure

PharMetrics Plus

CONDITION_OCCURRENCE

	-				
		CONDITION_		CONDITION	
	CONDITION_	SOURCE_		_SOURCE	CONDITION
PERSON_ID	START_DATE	VALUE	CONDITION _TYPE _CONCEPT_ID	_CONCEPT_ID	_CONCEPT_ID
05917921689					
	1/5/2006	41071	Inpatient claims - primary position	44825429	444406

OMOP CDM = Standardized structure: same tables, same fields, same datatypes, same conventions across disparate sources

LAIMS	s				_							
pat_id	cla	imno	f	rom_dt	i i	to_d	t	diagpr	c_ind	Diag	g_admit	dia
05917921689	IPA33	393946	1/	5/200	6	1/5/20	006	1		4	1071	410
.Rx/Dx												
VEDICAL_CLAIN	٨S											
md_clm_ic	ł	ims_pat_	nbr	d	t_of_s	ervice		rxer_id		dia	g_cd	
9596398210	02	8044590	08	8,	/1/20:	12 0:00		680488		41	071	
	ternationa			internat		age at ev	/ent o	date_of_even	interna t diagno			
in	ternationa	internati	onal	internat	ional							
lab_country pi	ractice_nu	n doctor	num	patient	_num	age_at_e	/ent t	uate_oi_even	t diagno n			
GE	GE6326	GE87	84	GE464	78747	20		11/19/2014 0:00	GE23	97573		
Diagnosis												
db_country	internation gnosis		ignosis	_num	icd10	0_4_code	icc	110_3_text	diagnos ider			
								ST elevation				
								nyocardial				_
GE		573	23975	73	1	21.4	- i	infarction	Confi	bom		

- Consistent structure optimized for largescale analysis
- Structure preserves all source content and provenance

PharMetrics Plus: CONDITION_OCCURRENCE

PERSON_ID	CONDITION_ START_DATE	CONDITION _SOURCE_V ALUE	
157033702	1/5/2006	41071	Inpatient claims - primary position
157033702	1/5/2006	41071	Inpatient claims - 1st position

LRX/DX: CONDITION_OCCURRENCE

		CONDITION	
	CONDITION_	_SOURCE_V	
PERSON_ID	START_DATE	ALUE	CONDITION_TYPE_CONCEPT_ID
80445908	8/1/2012	41071	Primary Condition

German DA : CONDITION_OCCURRENCE

PERSON_ID	CONDITION_ START_DATE		
46478747	11/19/2014	121.4	EHR problem list entry

Ambulatory EMR :

CONDITION_OCCURRENCE

		CONDITION	
	CONDITION_	_SOURCE_V	
PERSON_ID	START_DATE	ALUE	CONDITION_TYPE_CONCEPT_ID
271138	4/11/2013	1214	Primary Condition

OMOP CDM = Standardized content: common vocabularies across disparate sources

		CCURRENCE				
PERSON ID	CONDITION _START DATE	CONDITION _SOURCE VALUE	CONDITION _TYPE CONCEPT ID	CONDITION _SOURCE CONCEPT ID	CONDITION CONCEPT ID	
05917921689			Inpatient claims - primary position	4482542	444406	
LRx/Dx: CONDITIO	N_OCCURREN	CE				
PERSON_ID	CONDITION _START _DATE	CONDITION _SOURCE _VALUE	CONDITION _TYPE _CONCEPT_ID	CONDITION _SOURCE _CONCEPT_ID	CONDITION _CONCEPT_ID	
80445908	8/1/2012	41071	Primary Condition	4482542	444406	
German DA : COND						
	ULION OCCOR	RENCE				Ļ
PERSON_ID	CONDITION START	CONDITION	CONDITION _TYPE CONCEPT_ID	CONDITION _SOURCE CONCEPT ID	CONDITION CONCEPT_ID	,
PERSON_ID 6478747	CONDITION _START	CONDITION _SOURCE _VALUE	_CONCEPT_ID EHR problem list entry	_SOURCE		
6478747	CONDITION START DATE 11/19/2014	CONDITION _SOURCE _VALUE 21.4	_CONCEPT_ID EHR problem list entry	_SOURCE _CONCEPT_ID	_CONCEPT_ID	
PERSON_ID 6478747 Ambulatory EMR : PERSON_ID	CONDITION START DATE 11/19/2014 CONDITION_O	CONDITION _SOURCE _VALUE I21.4 CCURRENCE CONDITION	_CONCEPT_ID EHR problem list entry	_SOURCE _CONCEPT_ID	_CONCEPT_ID	_

- Standardize across vocabularies to a common referent standard (ICD9/10→SNOMED)
- Source codes mapped into each domain standard so that now you can talk across different languages
- Standardize source
 codes to be uniquely
 defined across all
 vocabularies
- No more worries about formatting or code overlap

ETL best practices

- Create ETL specification design document to promote transparency
- Share ETL source code to enable reproducibility
- ETL unit testing to improve concordance between specification and implementation
- Enable data quality exploration at all stages of analysis lifecycle using standardized data characterization tools

Create ETL specification design document to promote transparency

Mhite Rabbit	×	Castor In shat	-	
Locations Scan Fake data generation		Source	СБМ	Deals Searce patient
ddrug drugs	Add all in DB	atpatients patient	cdm_source	Targot pórsón Low
exe hosp outpat	Add	de	observation_period	
person		category	spezimen	
	Remove	contact	vist_occurrence	
Scan field values Min cell count 25 + Rows per table 1 million	Scan tables	actions		
Console		therapy	drug_exposure device_exposure	Terevels Assumption that we are going off the research database, so patients that
		contectlypeandactions diagnosis	condition_accurrence	needed to be scrubbleb out are already gone. So no patient scrubbing needs to be done during the ETL
		episodeproblem	measurement	
White Rabbit		Rabbit in a Hat		

https://github.com/OHDSI/WhiteRabbit

Share ETL source code to enable reproducibility

OHDSI / ETL-CDMBuilde	r	O Unwatch	- 58	🖈 Star	17 8	Fork 17	
<>Code () Issues 9 ()	Pull requests 1 🔟 Projects 0 💷 Wiki 🔟 Insights	O Settings					
Branch: master - ETL-CDMBui	ilder / man /	Create r	ew file	Upload files	Find file	History	
💂 ericaVoss Updating PREMIER doct	umentation		Late	st commit ø6c	367a on Au	g 21, 2018	
CERNER	Adding Cerner Documentation and Updated CDM_BUILDER	code.			10 mc	onths ago	
CPRD	New CPRD test cases				6 months ago		
HCUP	Loading CCAE/MDCR material				11 months ago		
JMDC	Updating JMDC test cases and documentation				5 months ago		
OPTUM_EXTENDED	Delete .RData				6 mc	onths age	
OPTUM_INTEGRATED	Optum Test Update				а	year ago	
OPTUM_ONCOLOGY	Optum - adding logic to handle multiple providers for an er	counter/visit			а	year ago	
OPTUM_PANTHER	Optum Panther CDM v5.3.1 updates 6 mc			onths ago			
PREMIER	Updating PREMIER documentation 5 months a			onths age			
SEER	Updated SEER document for CDM v5.2 a year a			year age			
TRUVEN_CCAE_MDCR	Moving files around to preserve URLs already mentioned in publications. 6 months a				onths ago		

https://github.com/OHDSI/ETL-CDMBuilder

ETL unit testing to improve concordance between specification and implementation

Observational Health Data Sciences and Informatics

Trace: • test_framework

Documentation

Getting Started with OHDSI

Common Data Model (CDM)

- CDM Specifications
- CDM Vocabulary

Convert Database to CDM (ETL)

- ETL creation best practices
- Example ETLs
- ETL Tools
- ETL Support

Tool Specific Documentation

- ATLAS
- ACHILLES
- White Rabbit
- Usagi
- Methods Library
- WebAPI
- Common Evidence Model

Rabbit-In-a-Hat testing framework

Rabbit-In-a-Hat can generate a framework for creating a set of Sunit tests. The framework consists of a set of R functions tailored to the source and target schema in your ETL. These functions can then be used to define the unit tests.

Unit testing assumes that you have your data in source format somewhere in a database. You should already have created an ETL process that will extract from the source database, transform it into CDM format, and load it into a CDM schema. The unit test framework can be used to make sure that your ETL process is doing what it is supposed to do. For this you will need to create a new, empty database with exactly the same structure as your

source data schema Run your ETL on the test data

Recent Changes Media Manager Sitemap

documentation:software:whiterabbit;test_framework

Table of Contents

Overview

framework

Search

 Test whether the CDM data meets expectations

Generate test data in the

Rabbit-In-a-Hat testing framework

Creating the testing framework

Defining unit tests using the

Available functions

Defining unit tests

Q

13

P

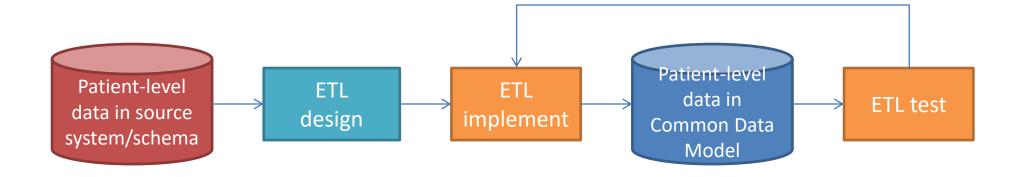
source database, and a new empty database where a test CDM database will live. The framework can be used to insert test data into the empty source schema. You can then run your ETL process on the test data to populate the test CDM database. you can then use the framework to verify that the output of the ETL in the test CDM database is what you'd expect given the test source data.

CDM database is what you'd expect given the test source data. http://www.ohdsi.org/web/wiki/doku.php?id=documentation:

software:whiterabbit:test framework

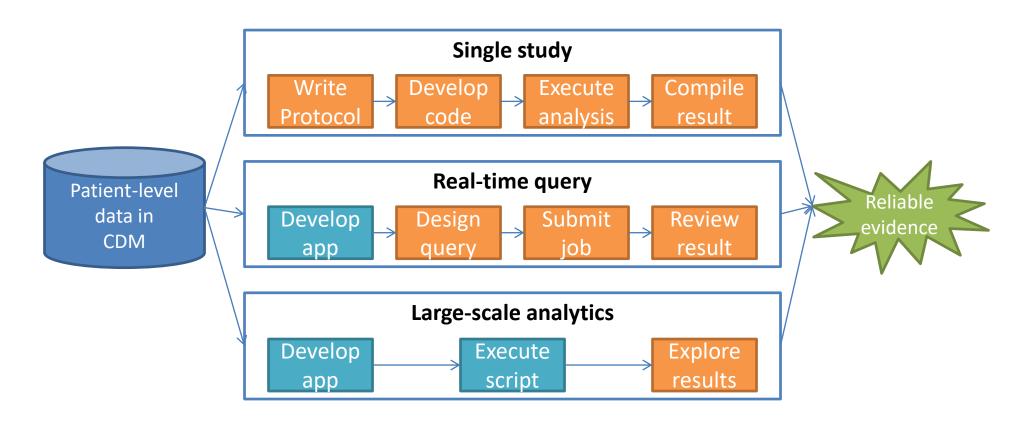
Enable data quality exploration at all stages of analysis lifecycle using standardized data characterization tools

Average Reserves Rule Id Warning Type Messa 4 6 WARNING 4-Mu 200 6 WARNING 200-4 301 6 WARNING 301-4 400 6 WARNING 400-4 402 23 WARNING 402-4 402 23 WARNING 402-4 600 6 WARNING 600-4 602 23 WARNING 602-4 602 23 WARNING 602-4 602 23 WARNING 602-4 700 6 WARNING 702-4 702 23 WARNING 702-4 700 6 WARNING 800-4 800 6 WARNING 800-4 802 23 WARNING 800-4 802 23 WARNING 800-4 802 22 WARNING 800-4 902 23 WARNING 9	Achilles Heel Results Viewer: SynPUF 5 percent sample		
200 6 WARNING 200-1 301 6 WARNING 301-1 400 6 WARNING 400-1 402 23 WARNING 402-1 402 23 WARNING 402-1 400 6 WARNING 402-1 402 22 WARNING 402-1 600 6 WARNING 602-1 602 23 WARNING 602-1 602 22 WARNING 602-1 602 23 WARNING 602-1 700 6 WARNING 702-1 701 6 WARNING 702-1 702 22 WARNING 702-1 800 6 WARNING 800-1 802 23 WARNING 802-1 802 23 WARNING 802-1 902 23 WARNING 902-1 900 6 WARNING 902-1		Record Count	A Download Heel Results
301 6 WARNING 301-4 400 6 WARNING 400-4 402 23 WARNING 402-4 420 22 WARNING 402-4 420 22 WARNING 602-4 600 6 WARNING 602-4 602 23 WARNING 602-4 602 22 WARNING 602-4 602 22 WARNING 602-4 700 6 WARNING 702-4 702 23 WARNING 702-4 702 22 WARNING 702-4 700 6 WARNING 800-4 800 6 WARNING 802-4 802 23 WARNING 802-4 802 23 WARNING 902-4 902 22 WARNING 902-4 900 6 WARNING 1000 1000 6 WARNING 1002	amber of persons by race, data with unmapped concepts	-	Associated Analysis SQL
400 6 WARNING 400-4 402 23 WARNING 402-4 402 22 WARNING 402-4 600 6 WARNING 600-4 602 23 WARNING 602-4 600 6 WARNING 602-4 602 23 WARNING 602-4 600 6 WARNING 602-4 700 6 WARNING 700-4 702 23 WARNING 702-4 720 22 WARNING 800-4 800 6 WARNING 800-4 802 23 WARNING 802-4 802 23 WARNING 802-4 902 23 WARNING 902-4 920 22 WARNING 902-4 900 6 WARNING 1000 1000 6 WARNING 1000 1000 6 WARNING 1002	Number of persons with at least one visit occurrence, by visit_concept_id; data with unmapped concepts		i Restort of persons by nece
402 23 WARNING 402-4 420 22 WARNING 402-4 600 6 WARNING 600-4 602 23 WARNING 602-4 620 22 WARNING 602-4 620 22 WARNING 602-4 700 6 WARNING 700-4 702 23 WARNING 702-4 720 22 WARNING 702-4 800 6 WARNING 800-4 802 23 WARNING 802-4 820 22 WARNING 802-4 902 23 WARNING 902-4 920 22 WARNING 902-4 920 22 WARNING 902-4 1000 6 WARNING 1000 1002 23 WARNING 1002 1020 23 WARNING 1002 1022 23 WARNING 1020 </td <td>Number of providers by speciality concept_id; data with unmapped concepts</td> <td></td> <td></td>	Number of providers by speciality concept_id; data with unmapped concepts		
420 22 WARNING 420-1 600 6 WARNING 600-1 602 23 WARNING 602-1 620 22 WARNING 602-1 620 22 WARNING 602-1 700 6 WARNING 700-1 702 23 WARNING 702-1 800 6 WARNING 800-1 802 23 WARNING 800-1 802 23 WARNING 802-1 902 23 WARNING 902-1 902 23 WARNING 902-1 902 23 WARNING 902-1 920 22 WARNING 902-1 920 22 WARNING 902-1 900 6 WARNING 902-1 902 23 WARNING 902-1 902 23 WARNING 1000 1000 6 WARNING 1000 <td>Number of persons with at least one condition occurrence, by condition_concept_id; data with unmapped concepts</td> <td></td> <td>HINT DISTRIBUTE ON REPORTATION 11 CREATE TEMP TABLE & tepact 4</td>	Number of persons with at least one condition occurrence, by condition_concept_id; data with unmapped concepts		HINT DISTRIBUTE ON REPORTATION 11 CREATE TEMP TABLE & tepact 4
600 6 WARNING 600-4 602 23 WARNING 602-4 620 22 WARNING 602-4 700 6 WARNING 700-4 702 23 WARNING 702-4 700 6 WARNING 702-4 702 23 WARNING 702-4 800 6 WARNING 800-4 802 23 WARNING 802-4 802 23 WARNING 802-4 802 23 WARNING 802-4 902 23 WARNING 902-4 902 23 WARNING 902-4 902 22 WARNING 902-4 902 22 WARNING 902-4 902 23 WARNING 902-4 900 6 WARNING 900-4 1000 6 WARNING 1000 1002 23 WARNING 1020 <td>Number of persons by condition occurrence start month, by condition_concept_id; 504 concepts have a 100% change in monthly count of events</td> <td>504</td> <td></td>	Number of persons by condition occurrence start month, by condition_concept_id; 504 concepts have a 100% change in monthly count of events	504	
602 23 WARNING 602-1 620 22 WARNING 620-1 700 6 WARNING 700-1 702 23 WARNING 702-1 700 6 WARNING 702-1 702 23 WARNING 702-1 800 6 WARNING 800-1 802 23 WARNING 802-1 802 23 WARNING 802-1 902 23 WARNING 902-1 902 23 WARNING 902-1 902 23 WARNING 902-1 900 6 WARNING 902-1 900 6 WARNING 902-1 900 22 WARNING 902-1 900 6 WARNING 902-1 900 6 WARNING 902-1 900 6 WARNING 1000 1000 6 WARNING 1002	Number of condition occurrence records by condition occurrence start month; theres a 100% change in monthly count of events		43 981807
620 22 WARNING 620-1 700 6 WARNING 700-1 702 23 WARNING 702-1 700 6 WARNING 702-1 700 22 WARNING 702-1 700 6 WARNING 702-1 800 6 WARNING 800-1 802 23 WARNING 802-1 802 22 WARNING 802-1 902 23 WARNING 902-1 902 23 WARNING 902-1 900 6 WARNING 900-1 900 6 WARNING 900-1 900 22 WARNING 900-1 1000 6 WARNING 1000 1000 23 WARNING 1002 1020 22 WARNING 1020 41 NOTIFICATION Notification Notification	Number of persons with at least one procedure occurrence, by procedure_concept_id; data with unmapped concepts		4 as emploising, CANTINATE CONCEPT ID AI VARCHAR() mettoall as warchar(195)) as stuares 2, castinuits
700 6 WARNING 700-1 702 23 WARNING 702-1 720 22 WARNING 702-1 800 6 WARNING 800-1 802 23 WARNING 802-1 802 22 WARNING 802-1 802 22 WARNING 802-1 902 23 WARNING 902-1 900 6 WARNING 902-1 900 6 WARNING 902-1 900 6 WARNING 902-1 900 6 WARNING 9000-1 1000 6 WARNING 1000 1002 23 WARNING 1002 1020 22 WARNING 1020 41 NOTIFICATION Notification Notification	Number of persons by procedure occurrence start month, by procedure_concept_id, 267 concepts have a 100% change in monthly count of events	267	COURTAINTEE person 141 as count allow
702 23 WARNING 702-1 720 22 WARNING 702-1 800 6 WARNING 800-1 802 23 WARNING 802-1 802 23 WARNING 802-1 802 23 WARNING 802-1 902 23 WARNING 902-1 920 22 WARNING 902-1 1000 6 WARNING 1000 1002 23 WARNING 1002 1000 23 WARNING 1002 1000 23 WARNING 1002 1020 22 WARNING 1020 1020 22 WARNING 1020 41 NOTIFICATION No bit No	Number of procedure occurrence records by procedure occurrence start month; theres a 100% change in monthly count of events		THOM
720 22 WARNING 720-1 800 6 WARNING 800-4 802 23 WARNING 802-4 820 22 WARNING 802-4 902 23 WARNING 902-4 920 22 WARNING 902-4 1000 6 WARNING 1000 1002 23 WARNING 1002 1000 22 WARNING 1002 1020 22 WARNING 1020 41 NOTIFICATION No brain	Number of persons with at least one drug exposure, by drug_concept_id; data with unmapped concepts		num.PERION
800 6 WARNING 800-1 802 23 WARNING 802-1 820 22 WARNING 802-1 902 23 WARNING 902-1 920 22 WARNING 920-1 1000 6 WARNING 1000 1002 23 WARNING 1002 1000 22 WARNING 1002 1020 22 WARNING 1020 41 NOTIFICATION No bit No bit	Number of persons by drug exposure start month, by drug_concept_id; 323 concepts have a 100% change in monthly count of events	323	group by MACE_CONCEPT_ID: ANALYZE = trpach 4
802 23 WARNING 802-4 820 22 WARNING 820-4 902 23 WARNING 902-4 920 22 WARNING 920-4 1000 6 WARNING 1000 1002 23 WARNING 1002 1002 23 WARNING 1002 1020 22 WARNING 1020 1020 22 WARNING 1020 41 NOTIFICATION No brown No brown	Number of drug exposure records by drug exposure start month; theres a 100% change in monthly count of events		1
820 22 WARNING 820-1 902 23 WARNING 902-1 920 22 WARNING 920-1 1000 6 WARNING 1000 1002 23 WARNING 1002 1020 22 WARNING 1020 1020 22 WARNING 1020 41 NOTIFICATION No bit	Number of persons with at least one observation occurrence, by observation_concept_id; data with unmapped concepts		+
902 23 WARNING 902-4 920 22 WARNING 920-4 1000 6 WARNING 1000 1002 23 WARNING 1002 1020 22 WARNING 1020 1020 41 NOTIFICATION No b	Number of persons by observation occurrence start month, by observation_concept_id; 60 concepts have a 100% change in monthly count of event	60	Associated Heel SQL
920 22 WARNING 920-1 1000 6 WARNING 1000 1002 23 WARNING 1002 1020 22 WARNING 1020 41 NOTIFICATION No bit	Number of observation records by observation start month; theres a 100% change in monthly count of events		ASSOCIATED THEFT OVER
1000 6 WARNING 1000 1002 23 WARNING 1002 1020 22 WARNING 1020 41 NOTIFICATION No bit	Number of persons by drug era start month, by drug_concept_id; 158 concepts have a 100% change in monthly count of events	158	ruleid (CDF-conformance substituting concept_1d
1002 23 WARNING 1002 1020 22 WARNING 1020 41 NOTIFICATION No bit	Number of drug era records by drug era start month; theres a 100% change in monthly count of events		HINT DISTRIBUTE_NEL REFINELING. 141
1020 22 WARNING 1020 41 NOTIFICATION No b	3-Number of persons with at least one condition era, by condition_concept_id; data with unmapped concepts		CREATE TEND TABLE (_taghaol_6
41 NOTIFICATION No be	2-Number of persons by condition era start month, by condition_concept_id; 480 concepts have a 100% change in monthly count of events	460	42
	3-Number of condition era records by condition era start month; theres a 100% change in monthly count of events		SELECT snalynig id.
27 NOTIFICATION Unm	body weight data in MEASUREMENT table (under concept_id 3025315 (LOINC code 29463-7))		ACUILLAS NULL stroing.
	sapped data over percentage threshold in Procedure		rule_id; record count
27 NOTIFICATION Unm	tapped data over percentage threshold in:Measurement		
27 NOTIFICATION Unm	happed data over percentage threshold in Condition		Excert 1
42 NOTIFICATION [Gen	neralPopulationOnly] Percentage of outpatient visits is below threshold		STITT pri-snalpair is;
35 NOTIFICATION IN-	https://github.com/OHDSI/Achilles		Chiff(CONCAT)'MANDITHT: ', castiovi.analynia a h as culw bi.


The goal isn't "data quality", it's "evidence quality" so need to apply a more holistic approach to validation

Validation: "the action of checking or proving the accuracy of something"

Clinical: to what extent does Data : are the data completely captured with plausible values in a the analysis conducted match the clinical intention? manner that is conformant to agreed structure and conventions? Clinical Data Validation Validation Software Methods Validation Validation Statistical : do the estimates Software : does the software do generated in an analysis what it is expected to do? measure what they purport to?


Structuring the journey from source to a common data model

Types of 'validation' required: Data validation, software validation (ETL)

Structuring the journey from a common data model to evidence

Types of 'validation' required: Software validation (analytics), Clinical validation, Statistical validation

One-time Repeated

Session I: Transforming Raw Data into Research-Ready Data

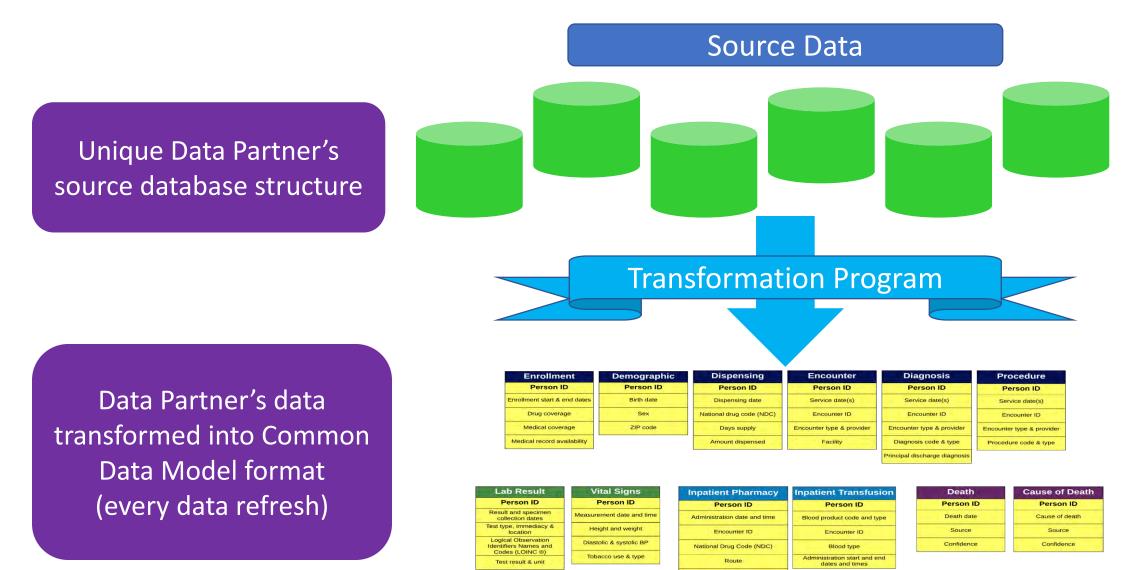
Duke MARGOLIS CENTER

Unpacking Real-World Data Curation: Principles and Best Practices to Support Transparency and Quality

Session I: Transforming Raw Data into Research-Ready Data

Jeffrey Brown, PhD January 22, 2019

DEPARTMENT OF POPULATION MEDICINE


Data networks have different goals and needs

- Provide information about individuals, e.g., Health information exchanges
 - Exchange patient data for patient care at the point of care
 - Need: real-time access, patient identity, minimal need for completeness or standardization (sending notes to read)
- Provide information about groups, e.g., Sentinel
 - Public health surveillance
 - Health services research
 - Clinical trial planning and enrollment
 - Prediction modeling
 - Regulatory decision-making and medical product efficacy
 - Need: size, fitness-for-use, methodology, data stability and standardization, transparency, reproducibility

All data models have same basic concepts

- Information about people
 - Demographics (e.g., age, sex, race, ethnicity, residence)
 - Other characteristics (e.g., disease and family history)
- Information about care documented during medical encounters
 - Standard vocabularies document care during health care encounters
 - Vital signs, images, and other measurements
 - Notes
- Patient reported information
 - Within healthcare setting
 - In community (e.g., social media, fitness trackers, geolocation)

All data models have same basic approach to standardization

Dose

Sentinel principles for data curation

- Data model should maximize user control and transparency
 - Retain original data elements and values
 - Transform values only when necessary, e.g., sex, care setting
- Create phenotypes and derived variables as part of analysis – analytic code documents all transformations
- Quality assessment for entire data set for every refresh
- Data Partner participation is essential to assure that source data is appropriate for inclusion and use

Early binding versus late binding

- Sentinel data must be ready on demand early binding
- Each data transformation is checked by operations team
 - 1,000s of checks and 50+ data refreshes a year
 - Checks for data model conformance, logic relationship, trends, outlier clinical validity
- Sentinel's early binding approach coupled with
 - Late-binding data quality review driven by the question and based on data and expert input
 - Validated analytic tools with embedded data quality output
 - Fitness-for-use is iterative process

Key questions

- Who is responsible for data curation?
- Who is responsible for assuring data fidelity between data source and data model?
- Who is responsible for determining whether a dataset is approved for use?
 - For every refresh at every Data Partner?
 - Is there a way to assure and document that the approved dataset is used for analysis?
- Do analytic tools use source data values or derived and mapped values?

Unpacking Real-World Data Curation: Principles and Best Practices to Support Transparency and Quality

Thank You

Session I: Transforming Raw Data into Research-Ready Data

Jeffrey Brown, PhD January 22, 2019

DEPARTMENT OF POPULATION MEDICINE

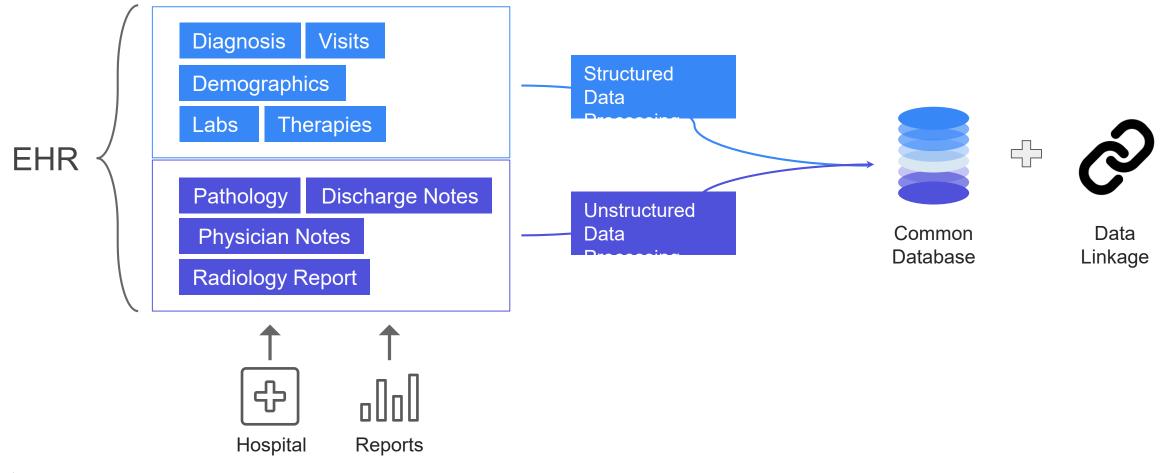
Session I: Transforming Raw Data into Research-Ready Data

Duke | MARGOLIS CENTER for Health Policy

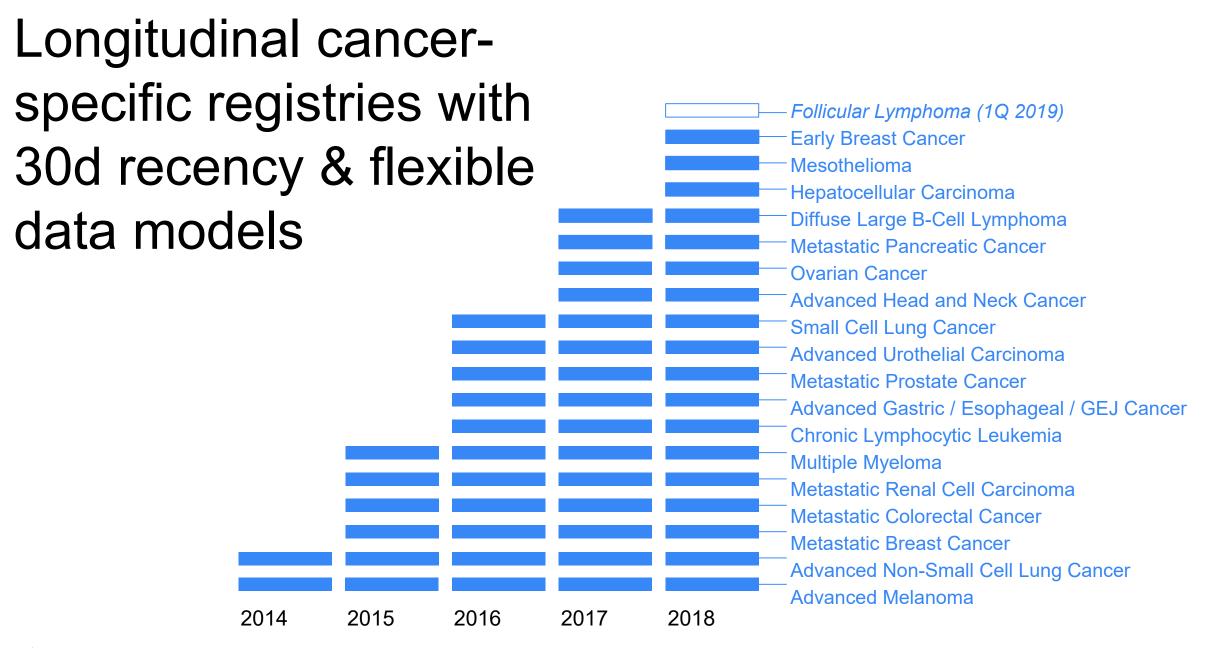
BREAK

Session II: Study Specific Data Curation to Establish a Fit-for-Purpose Dataset

Session II: Study Specific Data Curation


Amy Abernethy, MD, PhD

Chief Medical Officer / Chief Scientific Officer & SVP - Oncology, Flatiron Health (a member of the Roche Group)


Adjunct Professor of Medicine, Duke University School of Medicine

Data source and curation

© Flatiron Health 2018 60

Configurable Abstraction

H&E H&E H&E H&E H&E H&E H&E H&E	Lung, Right Upper Lobe Tis			Section	of	PD-L	1 Re	eport
Tumor Stained: 0 Reference Range Range Result NEGATIVE >= 50 % Result 0 50% 100% PD-L1, 22C3 Review: Manual AssayType NEGATIVE NEGATIVE Intensity: 0 Reference Range Reference Range Result 0 0 50% 100% PD-L1, 22C3 Review: Manual AssayType NEGATIVE NEGATIVE Reference Range NEGATIVE Results: NEGATIVE, ELIGIBLE FOR OPDIVO® NEGATIVE D Results: NEGATIVE, ELIGIBLE FOR OPDIVO® 0 50% 100%	H&E		10	55				
Review: Manual AssayType NEGATIVE Tumor Stained: 0 0 Reference Range NEGATIVE Intensky: 0 Reference Range Results: NEGATIVE, ELIGIBLE FOR OPDIVO® Results: NEGATIVE, ELIGIBLE FOR OPDIVO® 0 50% 100%		Tumor Stained:	0	Reference Range			sult	100%
Tumor Stained: 0 Reference Range Reference Range NEGATIVE <1 %	PD-L1, 22C3							
		Tumor Stained:	0	Reference Range NEGATIVE				
PD-L1, 28-8		Results: NEG	ATIVE, ELIG	IBLE FOR OPDIVO®		0	50%	100%
	PD-L1, 28-8							

For every PD-1/PD-L1 test a patient receives, Flatiron biomarker Data Model captures:

- Test status
- Test result
- Date biopsy collected
- Date biopsy received by laboratory
- Date result received by provider
- Lab name
- Sample type
- Tissue collection site
- Type of test (e.g., FISH)
- Assay / kit (e.g., Dako 22C3)
- Percent staining & staining intensity

The professional interpretation was performed a Clarient. Inc. 6455 Mission Court, West Bloomfield, MI, 45324. CLIA: 23D2013964

All non-small cell lung cancer patients are eligible for ORDMOD (nivolumab) regardless of their PD-1,1 status

Remaining study data is captured through trial-specific notes and documents in the EHR

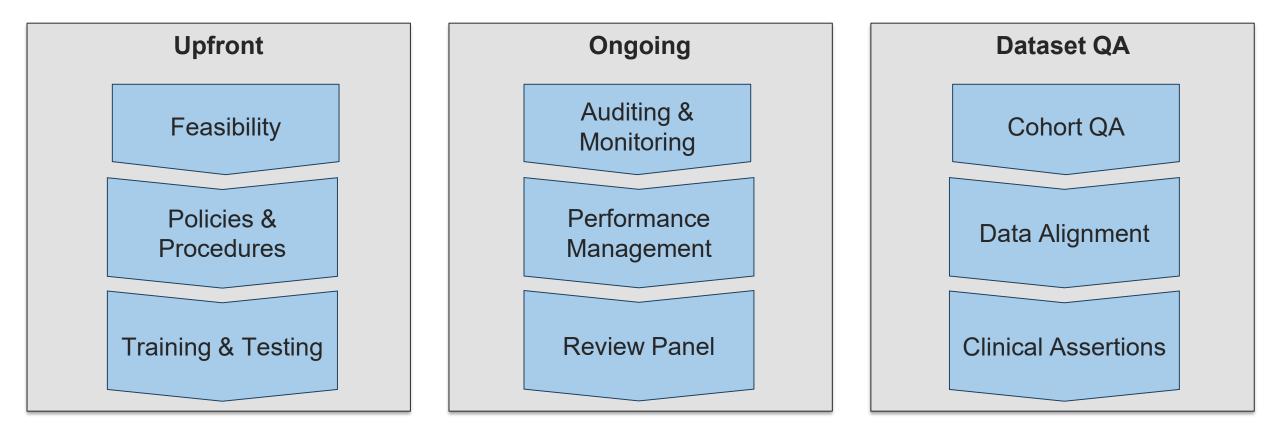
Example: Domains in an oncology study with EHR data source

- Demographics (DM)
- Subject Visits (SV)
- Con Meds (CM)
- Exposure (EX)

Adverse Events (AE)

- Disposition (DS)
- Med History (MH)
- Protocol Deviations (DV)
- I/E Criteria (IE)
- Lab Test Results (LB)
- Physical Exam (PE)
- Vital Signs (VS)
- Tumor ID (TU)
- Response (RS)
- Procedures (PR)
- Subject Elements (SE)
- Death (DD)

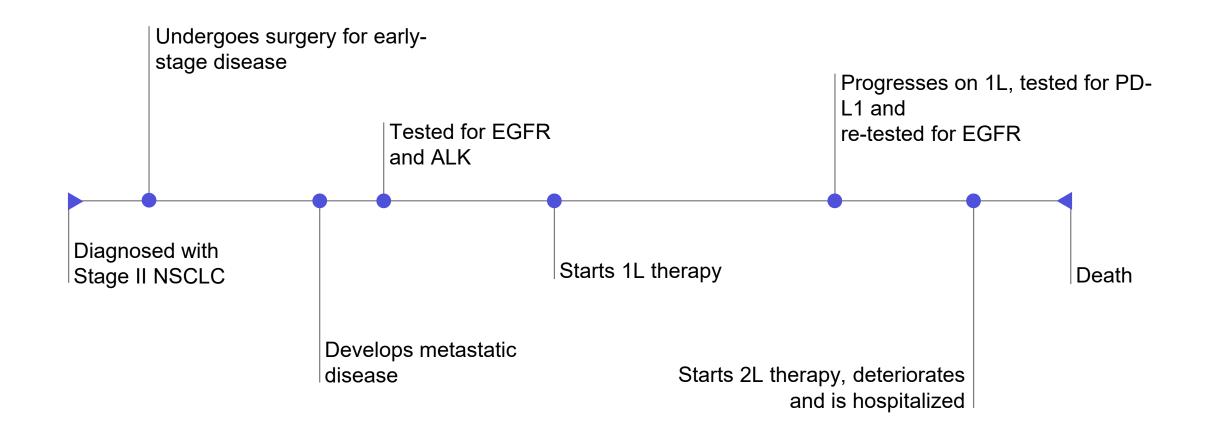
atiron


- Reproductive (RP)
- Healthcare Encounters (HO)

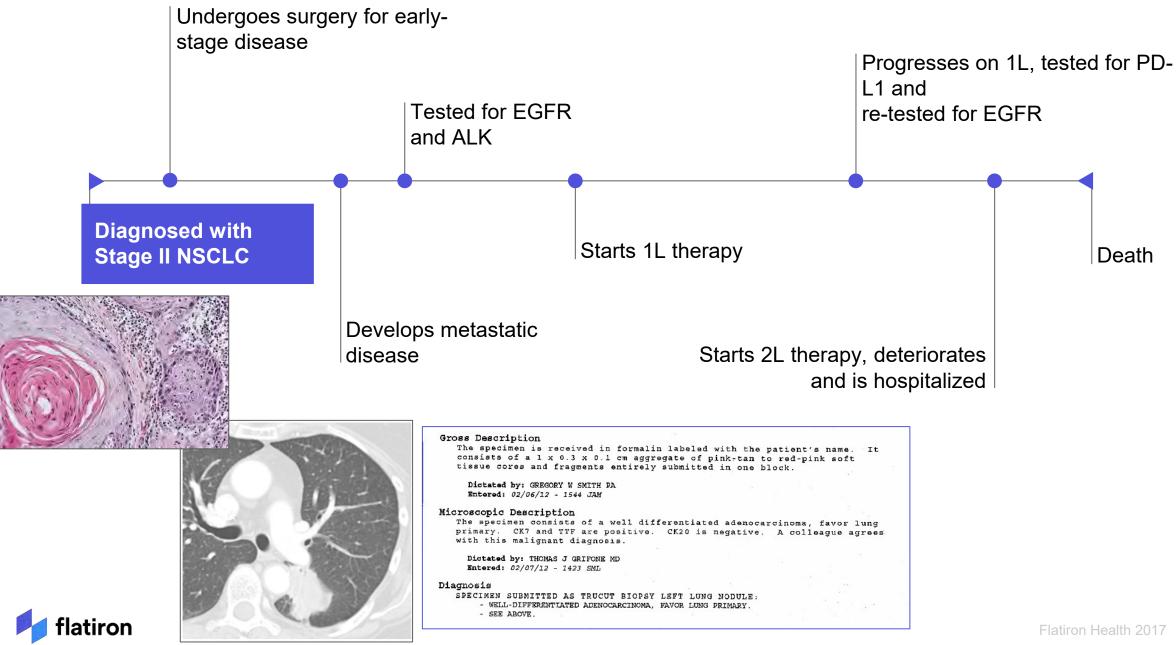
Example: Flatiron Note for Adverse Events

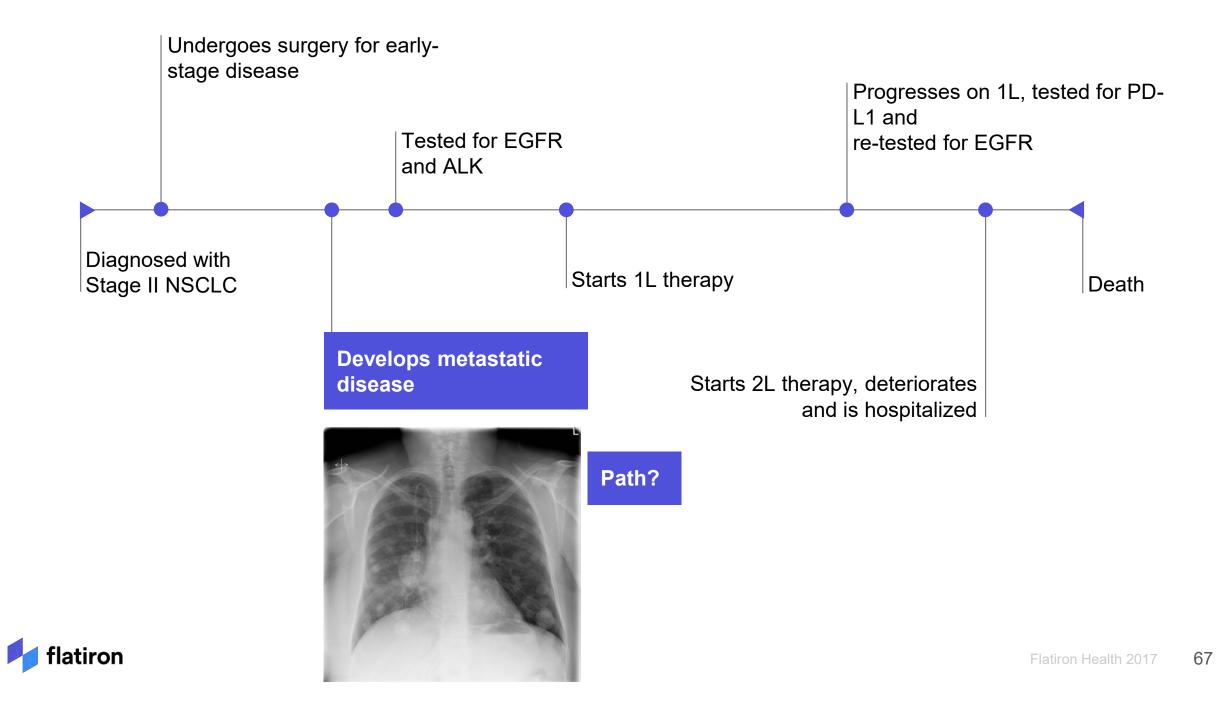
dvorse Event 01 Hide		
Adverse Event: Adverse Event:		
Description		
Grade: Grade:		
1 2 3 4 5		
Start Date: Start Date:		
DD-MMM-YYYY		
Status: Status:		
Active Resolved Progressed		
End Date: End Date:		
DD-MMM-YYYY		
Cause: Cause:		
Unknown Disease Treatment	Treatment/disease Other	
Certainty: Certainty:		
Unknown Unrelated to	Unlikely related to	Possibly related to
Probably rela	ated to Definitely rela	ted to
Study Treatment: Study Treatment:		
Not changed Held Interrupted	Dose reduced Withdrawn	
Concomitant Medication Given: Concomit	ant Medication Given:	
Yes No		
Classification: Classification:		
Adverse Event Serious Adverse Event	ent 🔲 Adverse Event of Special Interest	
Comments: Edit Comments:		

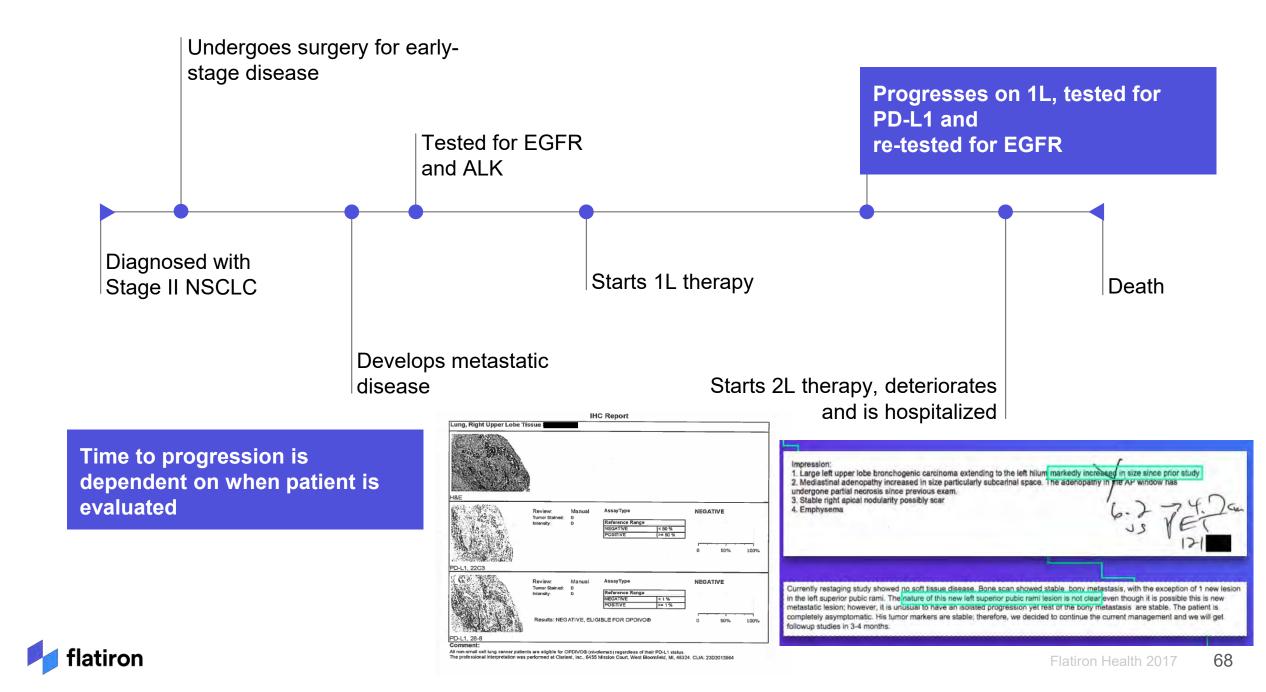
Configurable quality assurance & quality control


Centralized Controlled Environment

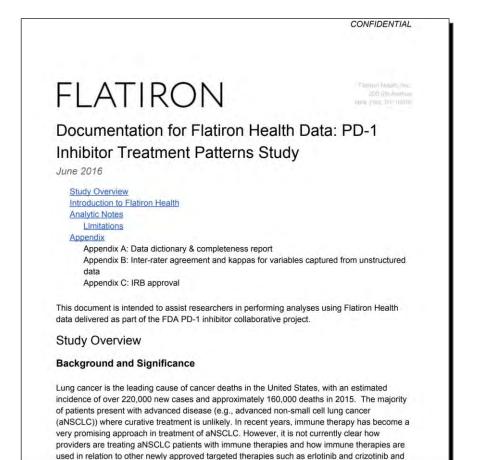
Asserting that this transformation is done properly


Data quality is in context

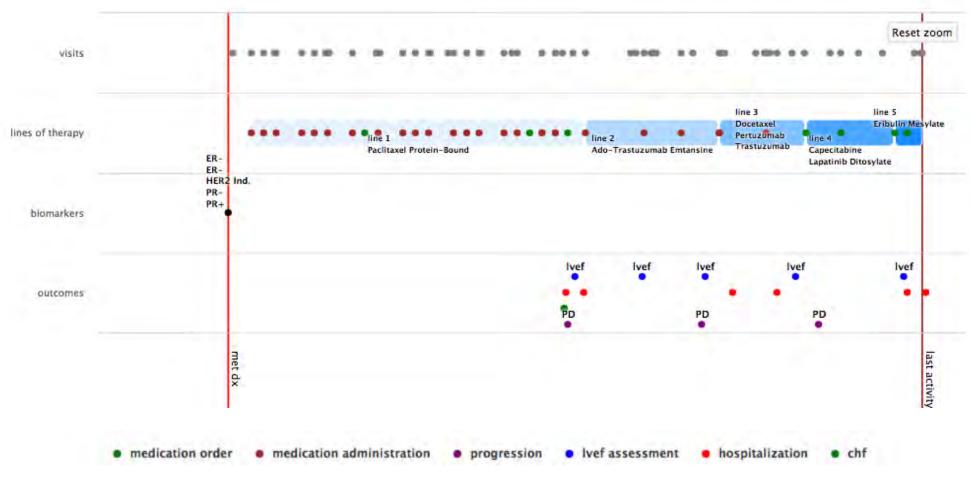




Diagnostic events are a combination of clinical, pathological, radiological, & biomarker data - *in context*

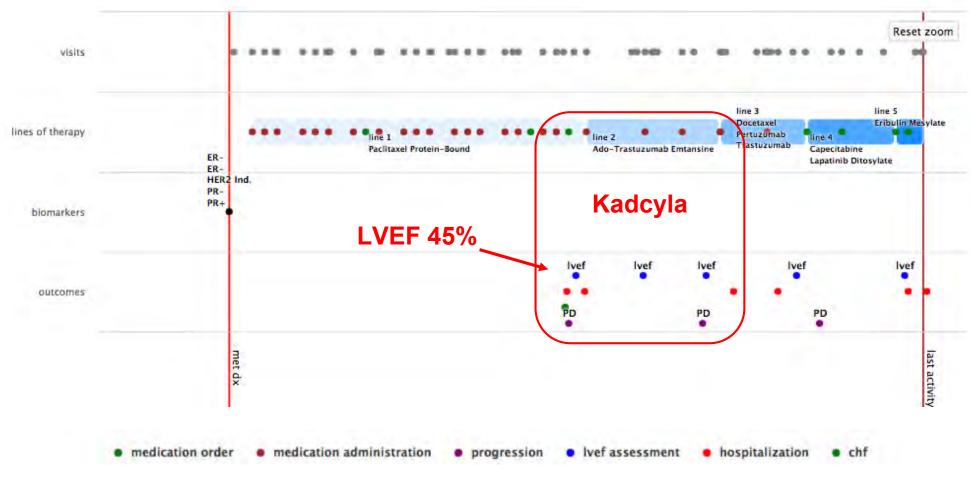


Analytic guidance provided with data deliverables - e.g., sensitivity analysis, clinical verification


traditional chemotherapy. Using real-world data can enable a greater understanding of the

- Deliver comprehensive analytic guide including:
 - Study Overview
 - Research Questions
 - Inclusion/Exclusion Criteria
 - Data Elements
 - Baseline Characteristics
 - Data Quality and Provenance
 - Data Freeze and Retention Process
 - Overview of Abstracted Variables Data Quality
 - Measure Inter-Rater Reliability
 - Interpreting Agreement
 - De-identification of Flatiron Data
 - Analytic Notes

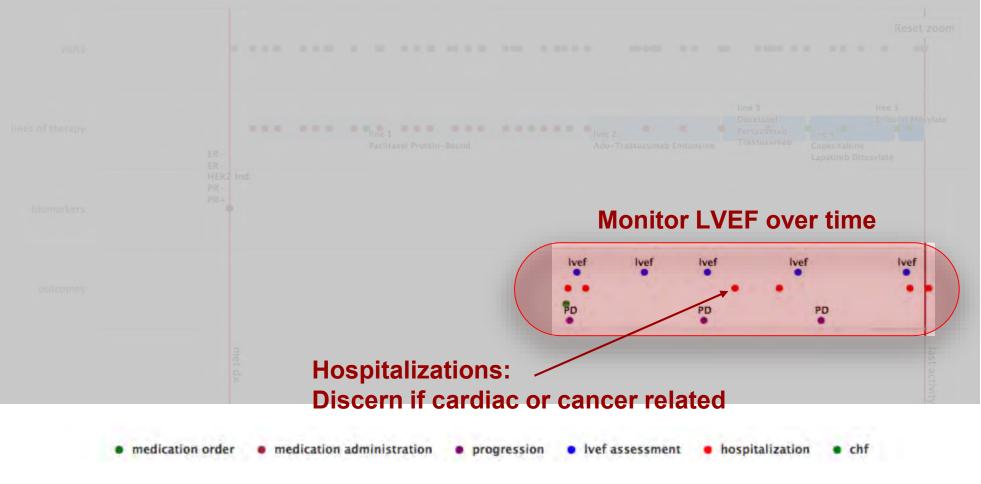
Data Verification via Patient Journey Visualizer



© Flatiron Health 2018

71

Data Verification via Patient Journey Visualizer



© Flatiron Health 2018

72

Data Verification via Patient Journey Visualizer

73

Lingua Franca for Data Quality

Not all data elements are created equal

Document clinical data quality and completeness

Completeness of technology-enabled abstraction Example: Advanced NSCLC

Variable	Structured data only	Flatiron data completeness
Metastatic diagnosis	26%	100%
Smoking status	0% ¹	94%
Histology	37%	99%²
Stage	61%	95%
ALK results (of those tested)	9%	100% ³
EGFR results (of those free text in dec tested) cluding 8% of patients	11%, licated field in EAR (requir ents with results pending o with results pending or ur	r unsuccessiul test

Accuracy of technology-enabled abstraction

Example: Sites of metastases

Site of met	Inter-abstractor agreement	Карра
Bone	97%	0.93
Brain	96%	0.91
Liver	92%	0.83
Lung	94%	0.87

Example: Flatiron data completeness report

Name of table as it appears in

the underlying data

Table: Table Name

Summary of Table		
Rows	5264	
Columns	9	
Distinct patients	5264	
% of broad cohort	100	
Mean # of observations per patient	1	

Number of rows in the table. Some tables may contain multiple rows	per patient
Number of columns in the table, which is equivalent to the number of	variables available in the table
Number of distinct patients represented in the table, which may not be	e equivalent to broad cohort
% of distinct of the broad cohort represented in the table	
Average number of rows per patient in the table	

Summary of Table Variables				
Variable	Completeness % - row level		Distribution (of non-null responses)	Methodology used to determine completeness
Variable 1	100	100	5264 distinct values	% of unique observations where PatientID is not null
Variable 2	100	98	173 distinct values	% of unique observations where PracticeID is not null
Variable 3	100	98	COMMUNITY: 100%	% of unique observations where PracticeType is not null
Variable 4	99.9	99.9	814 distinct values	% of unique observations where PrimaryPhysicianID is not null

Variable name as it appears in the underlying data

% of patients in the table with at least one non-null value (i.e., a field that is not empty) that is not a missingness string. Note: Patients with a non-null value similar to a missing value (e.g., "Group stage not known," "Other Payer - Type Unknown," etc.) are defined as missing (not complete) in this metric

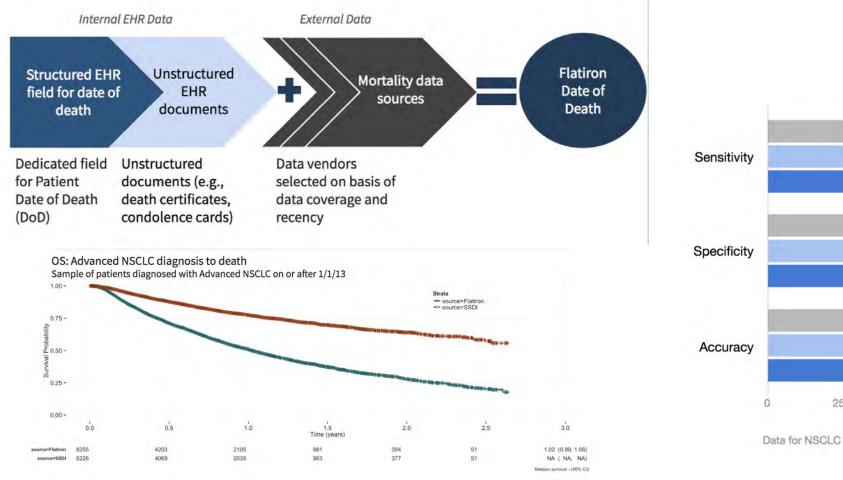
% of rows with a non-null value (i.e., a field that is not empty) that is not a missingness string. Note: Rows with a non-null value similar to a missing value (e.g., "Group stage not known," "Other Payer - Type Unknown," etc.) are defined as missing (not complete) in this metric

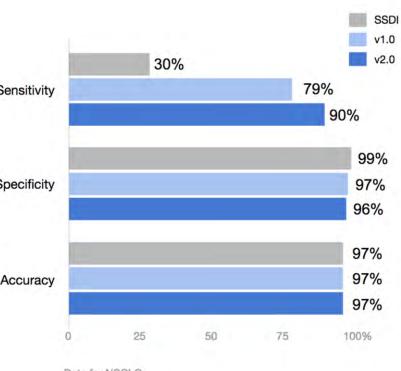
Table Summary

Synthesis of key takeaways from the metrics shown above

Flatiron Health 2018 76

Need a consistent approach to documenting quality of high risk or high value variables

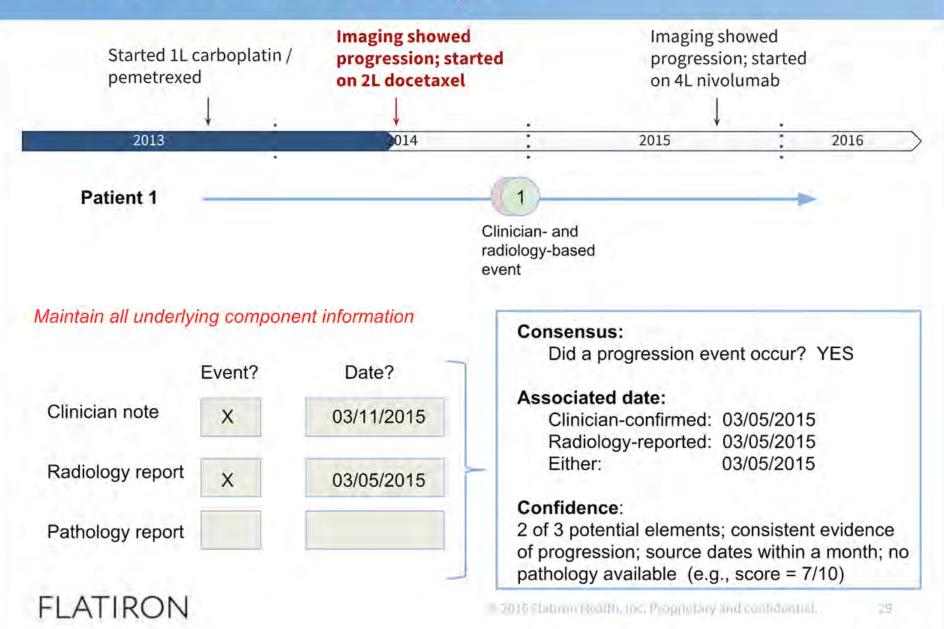

Project:	FDA	PD-1 inhibitors in aNS	CLC			
C ARTIN					Kappas scale	
Note: For questions where a his	gh percentage of patients have a common answer (e.g., PD-L1 testing state	us), kappa may be significantly li	ower than inter-rater	agreement.	Almost perfect	0.8 to 1.0
In these cases, it may be more	accurate to use inter-rater agreement to measure reliability of the data				Substantial	0.6 to 0.8
					Moderate	0.4 to 0.6
					Fair	0.2 to 0.4
					Slight	0 to 0.2
Table: Enhanced_Advance	dNSCLC					
Summary of variable inter-	rater agreement and kappas					
Variable	Description of variable	Corresponding question(s) on abstraction form	Question type	Inter-rater agreement (exact day for dates)	Kappa (exact agreement)	Kappa (30-day window for dates)
DiagnosisDate	Date of initial diagnosis	Enter the date of initial diagnosis	date	0.795	0.794	0,902
AdvancedDiagnosisDate	Date of diagnosis of advanced disease: first recurrence or metastasis	Enter the date of the first diagnosis of metastatic or advanced NSCLC	date	0.695	0.695	0.795
		Enter the date of initial diagnosis [for ~55% of patients in the cohort who are diagnosed metastatic]	date	0.795	0.794	0,962
MetastaticDiagnosisDate	Date of diagnosis of metastatic disease	Enter the date of distant metastatic diagnosis [for ~45% of patients in the cohort who are diagnosed non-metastatic]	date	0.527	0.476	0.557
Histology	Histology	Select the histology	drop down	0.947	0.894	
GroupStage	Group stage at time of initial diagnosis	Select the group stage	drop down	0.848	0.768	
SmokingStatus	Documented history of smoking	Smoking status	drop down	0.934	0.695	
EgfrTested	Indicator of whether the tumor was tested for a EGFR mutation	Was the tumor tested for a EGFR mutation?	boolean	0.927	0.84	
AlkTested	Indicator of whether the tumor was tested for an ALK rearrangement	Was the tumor tested for an ALK rearrangement?	boolean	0.901	0.791	
PdL1Tested	Indicator of whether the tumor was tested for PD-L1 expression	Was the tumor tested for PD-L1 expression?	boolean	0.901	0.547	
KrasTested	Indicator of whether the tumor was tested for a KRAS mutation	Was the tumor tested for a KRAS mutation?	boolean	0.894	0:728	
Ros1Tested	Indicator of whether the tumor was tested for a ROS-1 rearrangement	Was the tumor tested for a ROS-1 rearrangement?	boolean	0.881	W. 725	



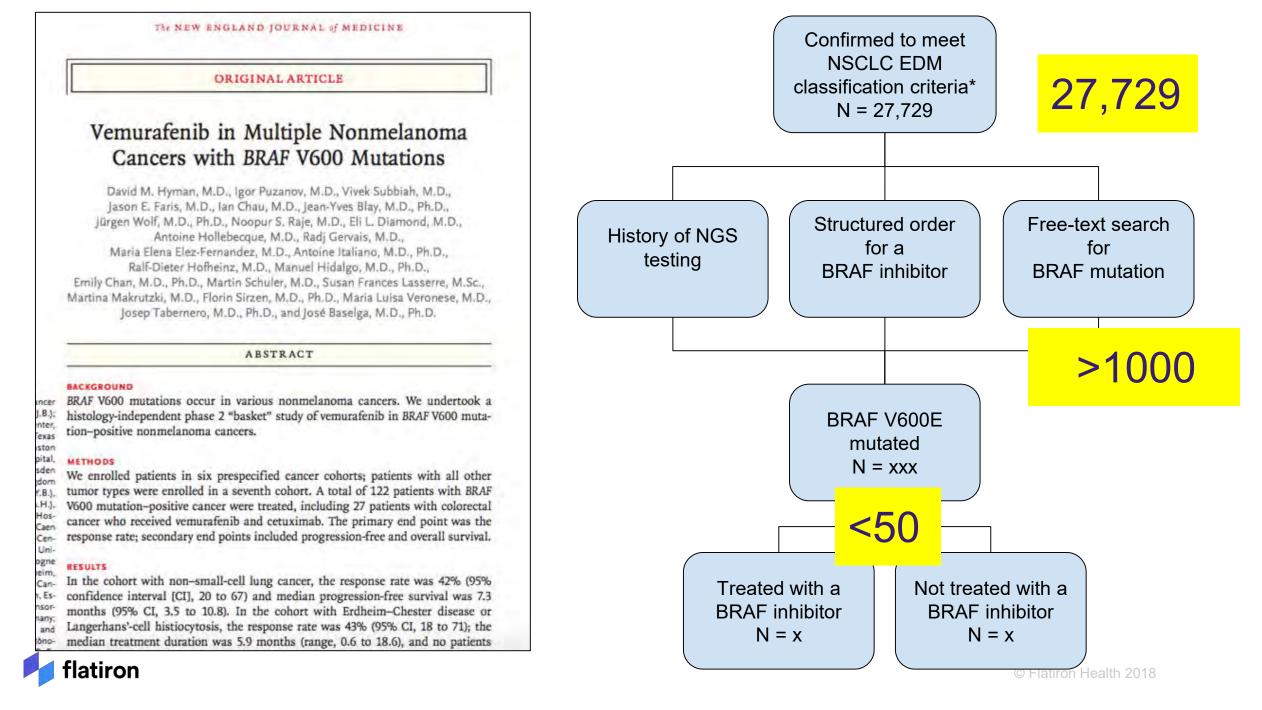
Validation of Oncology Endpoints

Data Quality & Validation Framework		
Face Validity	Oncologist agreement with definition & approach	
	Regulator and other stakeholder agreement with definition & approach	
Feasibility & Quality	Completeness of collected data	
of Variables (structured & abstracted)	Inter-rater agreement on progression dates for duplicate abstracted patients	
	Qualitative feedback from abstractors reviewing the medical records	
	 Likelihood of predicting a downstream event (e.g., overall survival) 	
Validity of Outputs	 Association between OS and PFS/TTP Patient-level correlation Responsiveness of endpoint to treatment effects 	

E.g., gold standard = National Death Index



© Flatiron Health 2017


rwP as a consensus endpoint

Small cohorts

© Flatiron Health 2018

Source evidence: Radiology report

CT SCAN OF THE CHEST, ABDOMEN AND PELVIS WITH ORAL ANI INTRAVENOUS CONTRAST:

History: Non-small-cell lung cancer.

IMPRESSION:

1.INCRE ASE IN SIZE AND NUMBER OF LEFT LOWER LOBE PULMONARY NODULES.

2.INCRE ASE IN MEDIASTINAL AND LEFT HILAR LYMPHADENOPATHY. 3.RESOLUTION OF A PRE VIOUS RIGHT LOWER LOBE PULMONARY NODULE. 4.NO SIGNIFI CANT CHANGE IN RENAL AND HEPATIC CYSTS.

Sincerely,

Clinician confirmation: Visit note one week later

Abd pain, nausea of unclear etiology.	
Diarrhea.	
Loss of appetite and weight loss.	
MRI brain negative.	
	the lungs, no abdominal pathology to explain nausea.
C diff (-).	
Recommendation/Plan:	
Discussed disease progression with	and his family today.
He does not want to pursue chemothera	ару.
With progressive wekaness and hemon	tysis, will arrange for hospice at home.

Unstructured records contain crucial clinical context.

Session II: Study Specific Data Curation to Establish a Fit-for-Purpose Dataset

EHR-based studies and data validity January 2019

Dan Riskin Chief Executive Officer

confidential

Outline

In this brief talk, we will drill down into issues of data validity

- Introduction
- What is data validity?
- How is data accuracy assessed?
- Conclusion

The goal is a thoughtful discussion on data validity in EHR-based studies

Outline

Who is speaking?

- Dan Riskin
 - Successful serial entrepreneur with products benefiting millions of patients
 - Adjunct Professor of Biomedical Informatics Research at Stanford
 - Testified on 21st Century Cures Initiative
- Verantos
 - Silicon Valley firm providing advanced EHR-based RWE studies
 - 3 of the top 10 biopharma firms are customers
 - Supported by NIH and NSF

The goal is a thoughtful discussion on data validity in EHR-based studies

What is data validity?

Study validity

What determines study validity?

A study is valid if the evidence is sufficient to make the clinical assertion

Validity is not a new expectation for physicians, researchers, or FDA

The changing face of RWE

Product franchises are adding EHR-based studies to their RWE strategy

	Registry (<i>Traditional model</i>)	EHR (New model)
Benefits	Controlled data collection Tailored information	Scale and power Flexibility in subgroups
Challenges	Limited scale Limited flexibility	Data collected for clinical use Technically challenging

EHR-based studies represent the area of fastest growth in RWE

Study validity

Study validity requires accuracy and generalizability

- Accuracy
 - Accuracy must be measured
 - Accuracy should be high enough to justify the clinical assertion
- Generalizability
 - The demographics and disease burden must be measured
 - These should adequately reflect characteristics of the target population
- Currently, regulators do not consistently require accuracy assessment in EHR-based studies, so this will be the focus of the talk

Data accuracy and generalizability are required if assertions are made

How is data accuracy assessed

Disruptive changes in EHR-based studies

Past EHR-based approaches do not translate to regulatory-grade studies

- Current use cases
 - Pharma uses purchased data sets for trial recruitment and marketing insight
 - Clinical assertions are not made in these uses, so accuracy is not measured
- Limitations in translating legacy data sets to regulatory-grade studies
 - Purchased EHR structured data sets have no underlying narrative or chart, so accuracy cannot be determined
 - When measured, these data sets have low cohort accuracy, with sensitivity < 50%
 - There is known bias, skewing toward higher sensitivity for sicker patients
- What is not good enough?
 - Not checking is not good enough
 - 50% accuracy is not sufficient to justify a 10% difference in study arms

The industry must move past legacy data and tech to meet requirements

The specificity fallacy

Some RWE firms report specificity but not sensitivity

- Why is specificity easier to measure than sensitivity?
 - Example: A pancreas cancer study uses 300 patients out of a 1 million patient EHR
 - The firm pulls the 300 charts from structured data and performs a chart abstraction to assess pancreas cancer false positives
 - The firm does not sample a portion of the million records to assess false negatives
 - Specificity is calculated, but sensitivityis ignored
- Why does ignoring sensitivity matter?
 - Sensitivity is where the error and bias resides
 - There is known skew in EHR accuracy... Sicker patients have more visits and are more likely to be added to the problem list
 - With a skew toward sicker patients, conclusions may be wrong or non-applicable

The industry cannot be allowed to test what's easy and ignore what's hard

Case study

How can a large biopharma firm run high quality RWE studies?

- 1. Firm X wanted to run a PCT and started by testing EHR cohort accuracy
 - 1. Requires underlying chart
 - 2. Requires willpower to actually check both specificity and sensitivity
- 2. Structured data accuracy was found to be insufficient for the assertion
 - 1. Structured data alone had cohort accuracy of 61.4% (F1-score, blended Sn and Sp)
 - 2. NLP alone brought cohort accuracy above 85%
 - 1. E.g. "Admitted for r/o MI."
 - 3. NLP + additional AI brought accuracy to 95.3%
 - 1. E.g. "Admitted for r/o MI. C/o chest pain. EKG revealed ST elev. Troponin elevated."
- 3. After enhancement, cohort accuracy met success criteria
 - 1. Support planned pragmatic clinical trial
 - 2. Will submit with a data validity report that measures accuracy for all key cohorts

Setting a high bar will keep healthcare safe and encourage innovation

Looking at data accuracy

What happens when we look at cohort accuracy?

Feature	EHR structured	EHR unstructured
Hypercholesterolemia	Recall: 55.1% Precision 98.0%	Recall: 98.2% Precision 99.4%
Diabetes mellitus	Recall: 80.6% Precision 97.9%	Recall: 97.0% Precision 92.6%
Chronic kidney disease	Recall: 40.8% Precision 97.6%	Recall: 92.9% Precision 97.9%
Dementia	Recall: 62.1% Precision 100.0%	Recall: 93.1% Precision 90.0%

If the FDA says data accuracy matters, firms will measure accuracy

*This table is provided for demonstration purposes only and does not represent actual results

Conclusion

Conclusion

Advanced RWE requires advanced validity assessment

- When a clinical assertion is made, validity must be assessed
- Validity should include accuracy and generalizability
- Accuracy must include both sensitivity and specificity
- If underlying data are insufficiently valid for the assertion, the data must be demonstrably enhanced or the assertion limited
- Enhancement approaches include natural language processing, other AI-based approaches, and clinical documentation improvement

Regulators should require accuracy assessment (sensitivity and specificity) for all key cohort for all EHR-based studies

Thank You

Session II: Study Specific Data Curation to Establish a Fit-for-Purpose Dataset

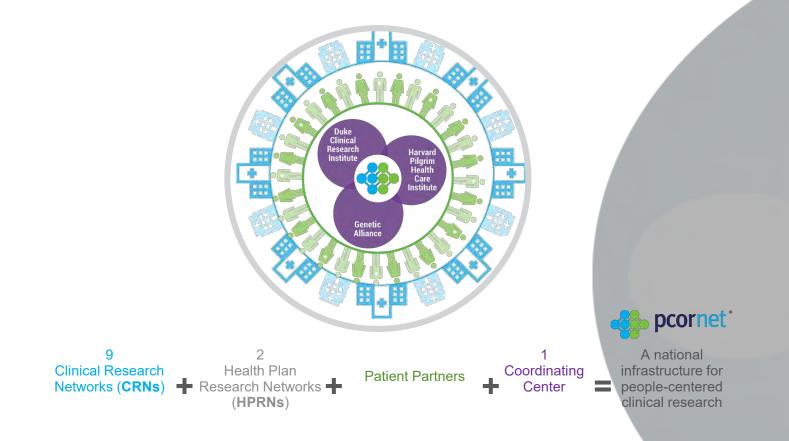
Study-specific data curation in PCORnet®

Keith Marsolo, PhD

Department of Population Health Sciences, Duke University School of Medicine

Distributed Research Network Operations Center (DRN OC)

PCORnet Coordinating Center


Disclosures

Previously served as a consultant for Novartis

This work was supported through several Patient-Centered Outcomes Research Institute (PCORI) Program Awards (CC2-Duke-2016; ASP-1502-27079; OBS-1505-30699; OBS-1505-30683). All statements are solely those of the speaker and do not necessarily represent the views of PCORI, its Board of Governors or Methodology Committee.

PCORnet[®] embodies a "network of networks" that harnesses the power of partnerships

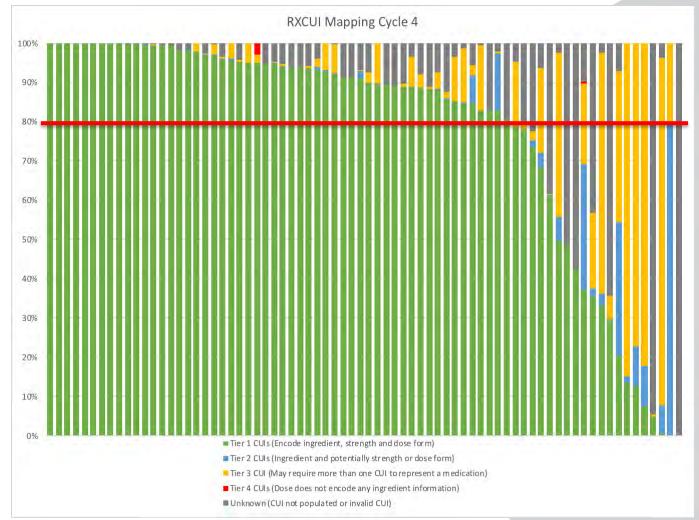
PCORnet[®] Data Strategy

- Standardize data into a common data model
- Ensure that data support the question (data curation)
 - Foundational
 - Study-specific
- Operate a secure, distributed query infrastructure
 - Develop re-usable tools to query the data
 - Send questions to the data and only return required information
- Learn by doing and repeat

Assessing foundational data quality – Data Curation

Purpose

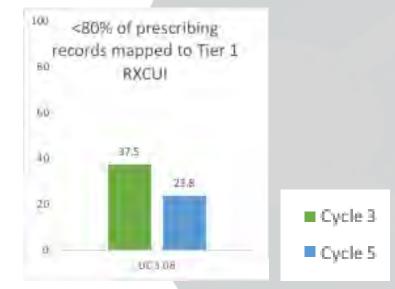
- Evaluate data quality and fitness-for-use across a broad research portfolio
- Generate meaningful, actionable information for network partners, investigators and other stakeholders
- Resources
 - Implementation Guidance to accompany CDM specification
 - ETL Annotated Data Dictionary
 - Data quality checks
 - Conformance
 - Completeness
 - Plausibility
 - Persistence
 - Data curation query packages
 - Analyses and reports
 - Discussion Forums


Study-specific data curation

- First challenge: convincing investigators that this step is even necessary (even more difficult if Coordinating Center is not the one running the study)
- Second challenge: what do to do with the results
 - Address the issue & incorporate into the foundational curation process (preferred)
 - Medication coding
 - Data latency
 - Consider proxy variables
 - Days supply
 - Leverage alternative data sources
 - Collect data on events directly from patients to supplement CDM (ADAPTABLE – out of scope for this talk)

Medication coding

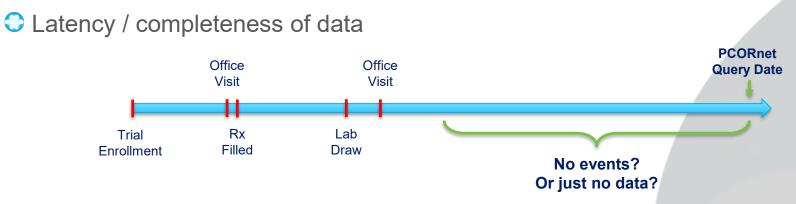
- Information about the medication ingredient, strength, and dose form is needed for many studies
- Implementation Guidance developed to establish the preferred mapping strategy
- Data Curation added a data check to measure adherence to the guidance



	RxNorm Term Type		Information incorporated			
	Code	Description	Ingredient(s)	Strength	Dose Form	Brand Name
Most			11 11 12 20 1		1.7.7	
Preferred	SBD	Semantic Branded Drug	x	x	x	х
	SCD	Semantic Clinical Drug	x	x	x	
	BPCK	Brand Name Pack	x	x	х	х
	GPCK	Generic Pack	х	x	х	
	SBDF	Semantic Branded Drug Form	x		x	x
1	SCDF	Semantic Clinical Drug Form	x		х	
4	SBDG	Semantic Branded Dose Form Group			x	х
	SCDG	Semantic Clinical Dose Form Group	x		х	
	SBDC	Semantic Branded Drug Component	x	х	$ _{L} = \cdots, $	х
	BN	Brand Name				x
	MIN	Multiple Ingredients	x			
	SCDC	Semantic Clinical Drug Component	x	х		
	PIN	Precise Ingredient	x		1	
Least Preferred	IN	Ingredient	X			
Do not use	DF	Dose Form	11110		x	
Do not use	DFG	Dose Form Group	1.		х	
Do not use	PSN	Prescribable Name				
Do not use	SY	Synonym				

Table IVG. RXNORM Term Type Mapping

This table shows the number of records in the PRESCRIBING table by RXNORM Term Type tiers. Guidance on mapping prescribing orders to RXNORM is provided in the CDM. These data support Data Check 3.08 (less than 80% of prescribing orders are mapped to a RXNORM_CUI which fully specifies the ingredient, strength and dose form). Data check exceptions occur if the Tier 1 percentage is <80% or the numerator is 0. Exceptions are highlighted in blue and should be investigated and explained in the ETL ADD.


Term Type Tier	Term Type Tier Description	Term Types	Numerator	Percentage	Source table
Tier 1	RMNORM_CUI encodes ingredient(s), strength and dose form	SCD, SBD, BPCK, and GPCK	2,204	13.90	PRES_L3_RXCUI_TIER
Tier 2	RXNORM_CUI encodes ingredient(s) and potentially strength or dose form. Can still represent medications with multiple ingredients with a single RXCUI.	SEDF, SCDF, SEDG, SCDG, SEDC, BN, and MIN	7,118	44.90	PRES_L3_RXCUI_TIER
Tier 3	Requires more than one RXNORM CUI to represent medications with multiple ingredients.	SCDC, PIN, and IN	5,888	37.14	PRES_L3_RXCUI_TIER
Tier 4	RXNORM_CUI does not encode any ingredient information.	DF and DFG	0		PRES_L3_RXCUI_TIER
Unknown	RNNORM CUI was not populated or could not be matched to the reference table	n/a	642	4.05	PRES_L3_RXCUI_TIER

Note: all partners must pass this check starting July 2019

Data latency

Questions:

- "How complete & up-to-date are the data we're looking at?" (DSMB)
- *"What's the data censoring date for participants?" (Statistician)*
- Developed latency calculation & incorporated into data curation

Data latency as part of data curation

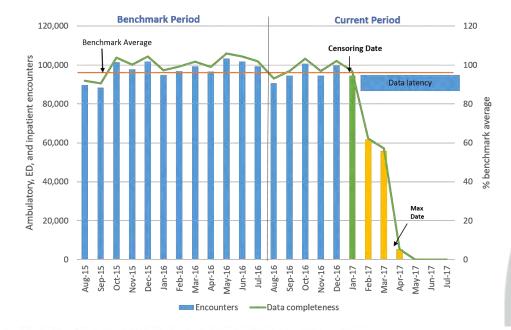


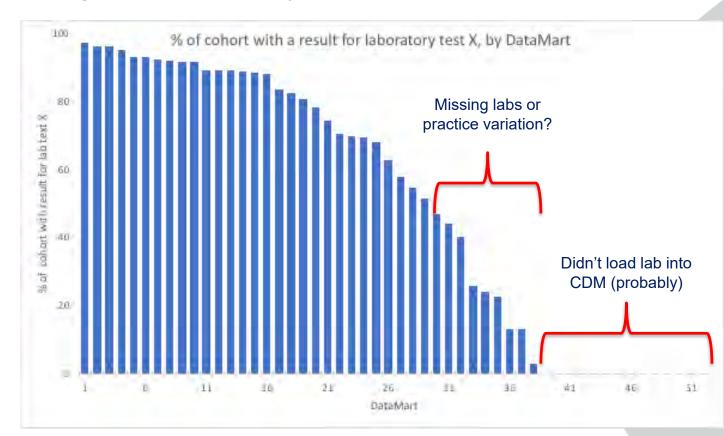
Table IVG. Data Latency and Completeness of Vital, Prescribing, and Lab Data, Past 2 Years

This table includes VITAL, PRESCRIBING, and LAB_RESULT_CM data from the most recent 24 month period; month -0 is the month the data curation query was run. Data completeness is determined by comparing the actual volume to the expected volume in each month. Expected volume is determined by taking the average volume during the benchmark period of months -12 to month -23. Data completeness is reported as a percentage of the benchmark average. Temporal differences may be affected by data availability, ETL processes, date shifting, secular trends, and/or changes in data provenance.

These data support Data Check 3.11 (vital, prescribing, or laboratory records are less than 75% complete three months prior to the current month). Data check exceptions occur if the month -3 result is <75% of the benchmark average or 0 records. Data check exceptions are highlighted in blue. Data check exceptions and unexpected results should be investigated and explained in the ETL ADD.

	Vitals		Prescriptions		Labs	
Month	Records	Percent of benchmark average	Records	Percent of benchmark average	Records	Percent of benchmark average
Month -0	60,980	9.8	16,015	13.0	82,977	13.0
Month -1	495,533	79.4	118,617	96.3	583,263	91.3
Month -2	560,362	89.7	121,318	98.5	604,813	94.7

Proxy variables – days supply


- Study Aims: To evaluate the comparative effects of different types, timing, and amount of antibiotics prescribed during the first 2 years of life on:
 - Body mass index and risk of obesity at 5 and 10 years
 - Growth trajectories from infancy onwards
- Sample findings from study-specific characterization
 - Days supply highly missing
 - Start date minus end date low percent missing very different from the global measure

One key takeaway – a proxy variable for one study may not be suitable for another

Open issues (one example)

Differentiating between data quality issues & normal practice variation

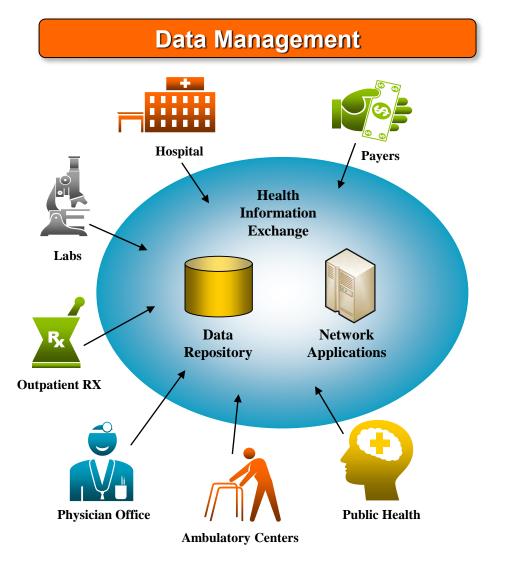
Next steps / recommendations

- Need to stress importance of fixing data issues that can be resolved
 - Datamart administrators are typically not the ones using the data, so they may not understand the impact of leaving things unaddressed
- Identify incentives that would improve data quality on the front end
 - Clinicians will support changes in workflow (within reason) if there's a benefit to them
 - Goes beyond research precision medicine, analytics, etc. (better care?)
- Define guidance for what it means to be "regulatory grade"
 - Can we create a checklist as opposed to "we know it when we see it"?

Session II: Study Specific Data Curation to Establish a Fit-for-Purpose Dataset

LUNCH

Session III: Linking Multiple Data Sources



Linking Multiple Data Sources: Considerations for Use Cases and Quality

Shaun J. Grannis, MD, MS, FAAFP, FACMI Director, Regenstrief Center for Biomedical Informatics Regenstrief Clem McDonald Scholar for Biomedical Informatics Associate Professor, Family Medicine, IU School of Medicine Biomedical Research Scientist, Regenstrief Institute

Data Linkage: The Indiana Network for Patient Care (INPC)

	Data Ac	cess & Use
Hospitals		 Results delivery Secure document transfer Shared EMR Credentialing Eligibility checking
► Physicians		 Results delivery Secure document transfer Shared EMR CPOE Credentialing
Labs		 Eligibility checking Results delivery
Public Health		 Surveillance Reportable conditions Results delivery De-identified, longitudinal clinical data
Payer		Secure document transferQuality Reporting
Researcher		 De-identified, longitudinal clinical data (OMOP CDM, i2b2) Subject Recruitment Clinical Trials

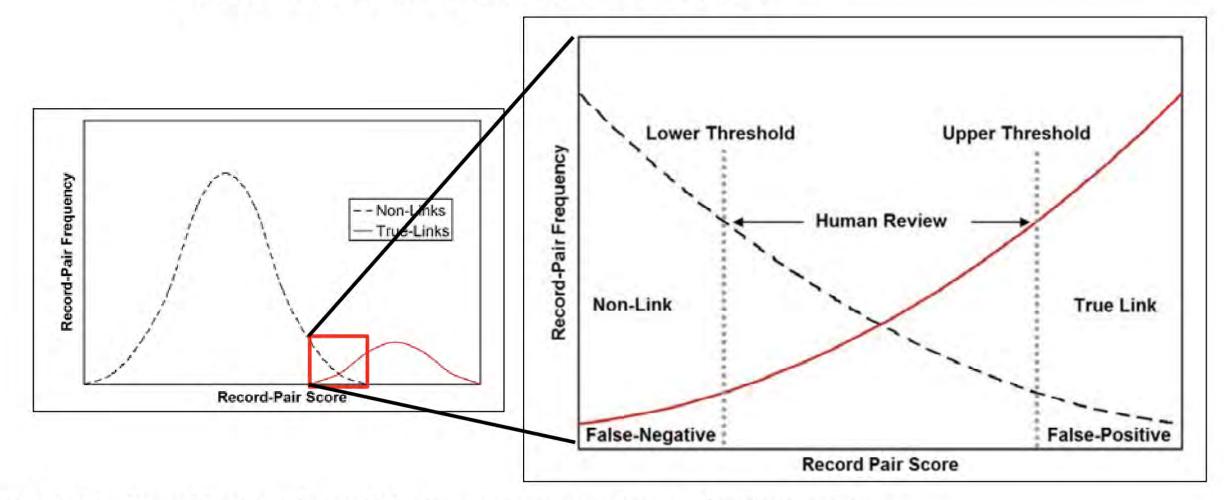
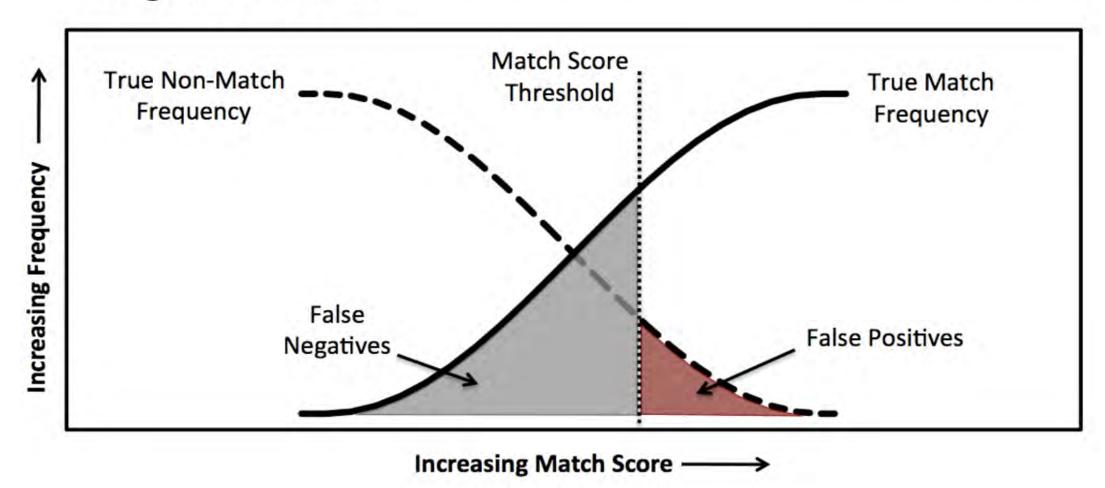

R

Figure 7-1. Examples of Matching Scenarios Broken Down By Dimensions of Workflow Timing and Human Supervision

Workflow Timing

		Batch Mode	Real Time
Supervision	Substantial Manual Supervision	Reporting, Research	Health Care Enterprise (Hospitals)
Human Su	Little or No Manual Supervision	De-identified Matching	Health Information Exchange


Figure 5-1. Illustration of the Intermediate Score Range Where Both True Matches and Non-Matches Are Present

NOTE: To disambiguate these linkages, human review is often necessary.

Perspectives on Patient Matching: Approaches, Findings, and Challenges

Figure 7-2. Illustration of the Relationship Between False Positive and False Negative Matches

NOTE: As the match score threshold is increased, the number of false positives decreases, but false negatives increase. As the match score threshold is lowered, the number of false negatives decreases, but false positives increase.

Linkage Metrics

- 1. Algorithm metrics:
 - sensitivity (recall), PPV (precision), F-measure
- 2. Data Quality metrics:
 - completeness (missing rate)
 - accuracy/error rates (conformance to known data requirements/business rules)
 - discriminating power (various measures)
- 3. Business processes metrics
 - Data validation methods
 - Compliance with established process standards

How to compare across sites/regions?

Linking Multiple Data Sources: Considerations for Use Cases and Quality

Shaun J. Grannis, MD, MS, FAAFP, FACMI Director, Regenstrief Center for Biomedical Informatics Regenstrief Clem McDonald Scholar for Biomedical Informatics Associate Professor, Family Medicine, IU School of Medicine Biomedical Research Scientist, Regenstrief Institute

Session III: Linking Multiple Data Sources

(C) DATAVANT

Connecting the world's health data

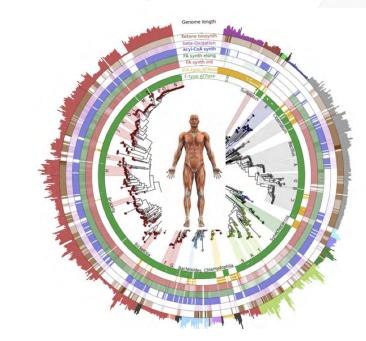
CONFIDENTIAL

What we do

1. Protect

De-identify datasets to protect patient privacy and reduce risk

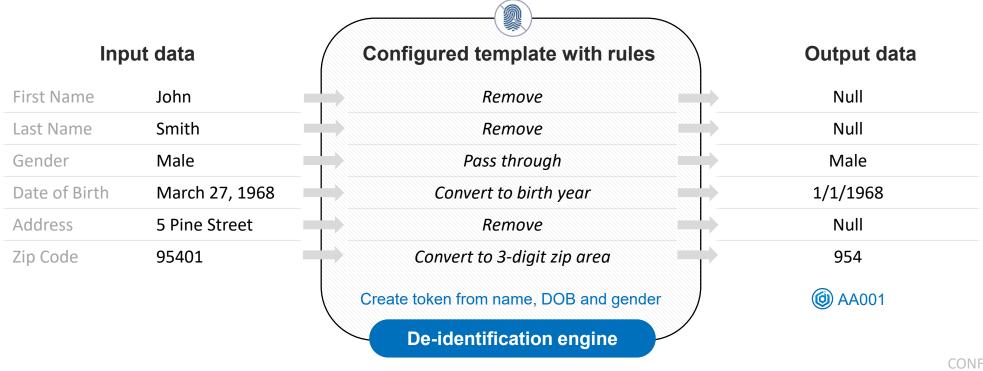
2. Link


Connect matching patient records across datasets to increase data completeness and dimensionality

3. Discover

Help institutions discover data sources that augment their knowledge of a population

Assembling a more holistic view of the patient...


...to expand the set of questions that can be answered in healthcare

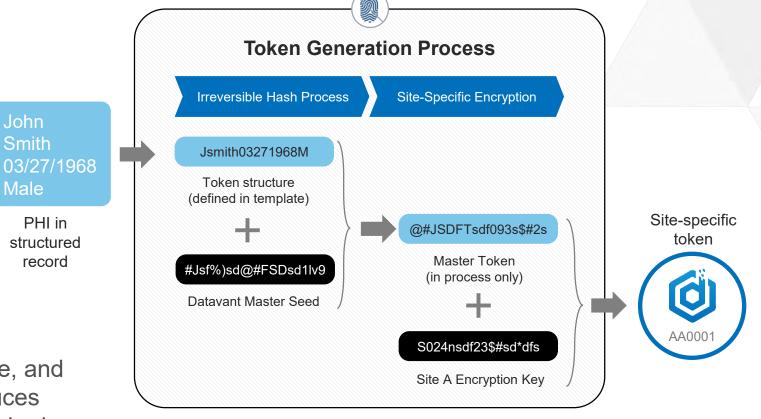
000

Secure, HIPAA-Compliant De-identification

- Datavant's technology can be installed on-premise, meaning that we don't need access to client's data or systems
- We work with clients to configure the de-identification rules required for a specific data layout and use case, using Safe Harbor or the Expert Determination method to ensure compliance with HIPAA

Adding Anonymized Linking Tokens to Each Record

(d)


DATAVANT

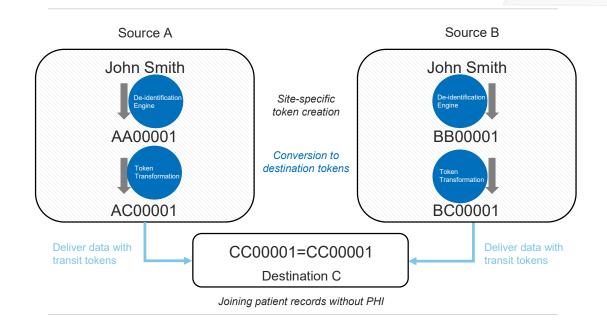
John

Male

Token creation has two steps:

- 1. Hashing: Makes tokens irreversible, securing users from employee or Business Associate regulatory violations
- 2. **Encryption**: Makes tokens sitespecific, protecting users from a partner's security breach
 - Our tokenization process has been cryptographically-certified as secure, and our de-identification software produces datasets that have been certified to be in compliance with HIPAA

Linking De-Identified Data With Tokens

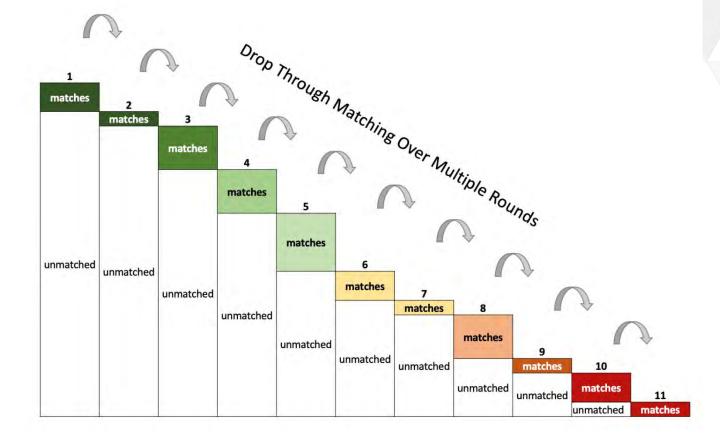

[0]

DATAVANT

Connect patient records across multiple datasets without ever sharing PHI

- Because tokens are site-specific, they cannot be matched across sites unless they are transformed.
- When both parties agree to exchange data, Datavant enables a second piece of software to convert tokens from one encryption key to another.
- In this way, tokens from different sources can be converted into a common encryption key to allow joining.
- Once in a common key, tokens from the different datasets are matched according to each user's needs.

Multiple sources sending data to recipient


Logic to Support Stringent AND Broad Matching

We recommend not picking a single token or token combination for matching logic, but to instead take advantage of multiple matching options using a "drop through" or "waterfall" technique.

- 1. The most stringent set of tokens are used in the first round to define a match.
- 2. Any records matched in this round are put aside, and only unmatched records move to the next round.

This cycle is repeated using less and less stringent matching logic over multiple rounds.

Best matches are always made first, with only a few rounds used for stringent matching, and many rounds used for broad matching.

Appendix

Matching with Datavant Tokens

Using Datavant's software, companies can de-identify and tokenize patient records so that they can be linked across disparate datasets.

Patient records can be linked based on token matches (when tokens are in the same site key). The quality of a given match depends on the tokens used and on the specific matching logic.

Datavant has many different token types that are composed from different combinations of PII:

- Some designs are deterministic (using Social Security Number, for example)
- Most designs are probabilistic (based on a combination of non-unique fields such as: first name, last name, DOB and gender)

Datavant recommends adding <u>multiple</u> tokens to each data file to:

- Increase the chances that de-identified datasets will share common tokens and be join-able
- Increase accuracy of matching by having more tokens with which to confirm a match result
- Allows clients to select matching stringency from strict to broad depending on their specific use case and their sensitivity to either false positives or false negatives

0

2 Embarcadero Center 9th Floor San Francisco, CA 94111

415-520-1171 info@datavant.com

Sam Roosz

Head of Partnerships

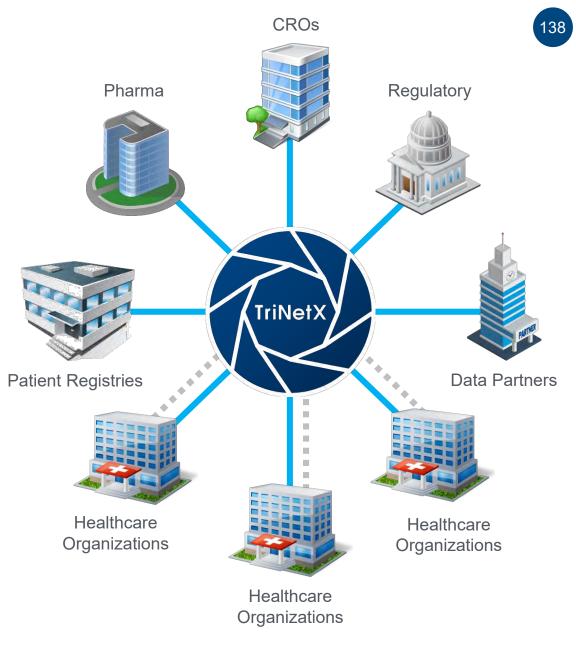
+1.765.490.9385 sam@datavant.com

CONFIDENTIAL

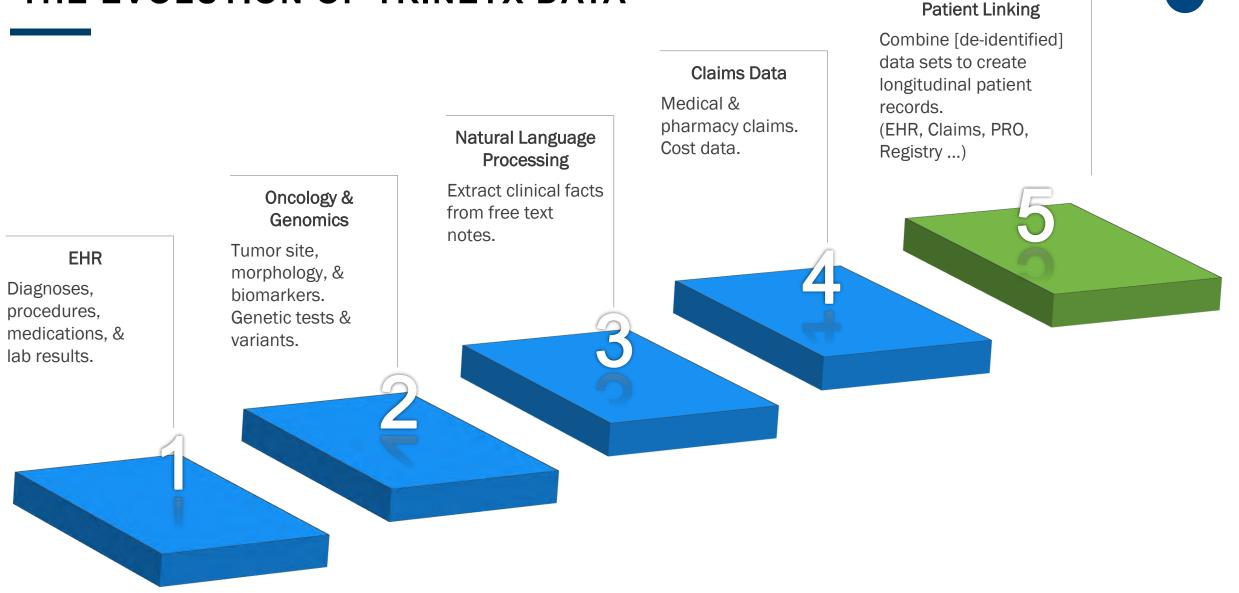
Session III: Linking Multiple Data Sources

The Global Health Research Network

LINKING IN PRACTICE


PRESENTED BY:

Steven Kundrot


COPYRIGHT © 2019 TRINETX, INC. ALL RIGHTS RESERVED. CONFIDENTIAL

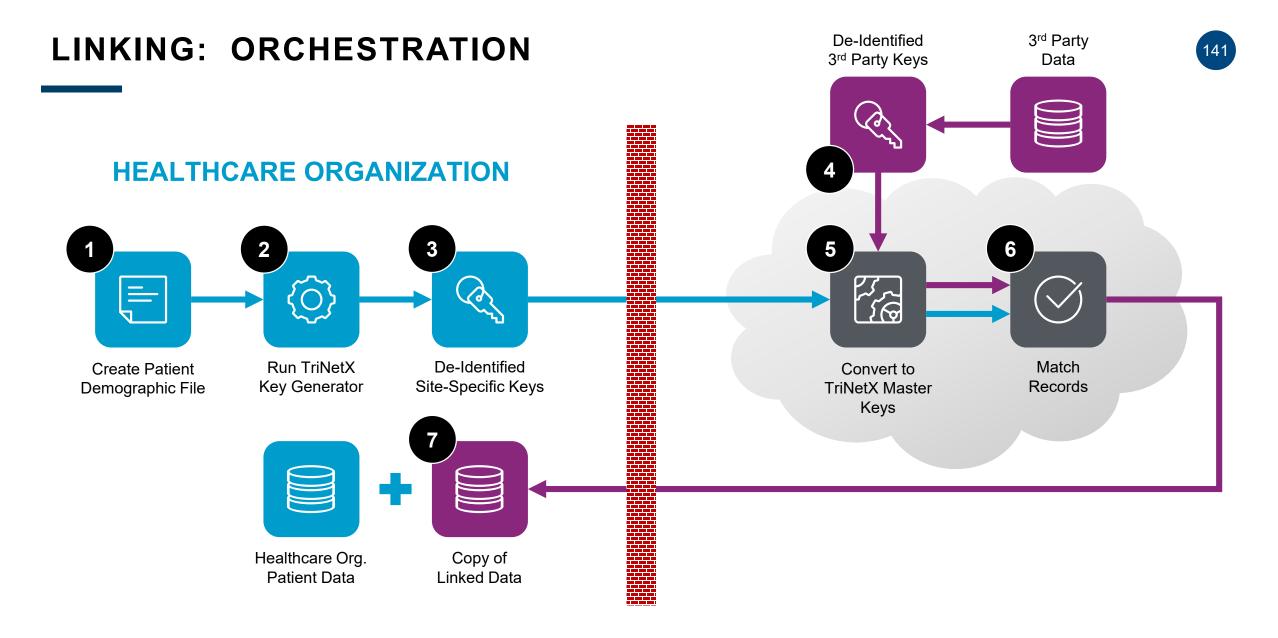
- Global health research network
- Cloud-based platform enabling ondemand access to real-world data and analytic tools
- Data sourced and continuously refreshed from EMRs, Claims, PRO, registries and unstructured sources
- Path back to the patient via IRB and Honest Broker
- Data is downloadable
- Federated model & compliant with international privacy standards

THE EVOLUTION OF TRINETX DATA

LINKING: SOLUTION CONTEXT

Implementation within the context of a federated, global network ...

KEY ASSUMPTIONS


- Governance/privacy
- Broad applicability
- Matching validity
- Performance and scale
- Flexible implementation

VENDOR SNAPSHOT

- Datavant / UPK
- Health Data Link
- Verato
- Experian
- Health Verity
- Symphony Health

LINKING: GOVERNANCE

ELIGIBLE COHORT

 \bigcirc (\mathcal{R}) (\mathcal{R}) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) Ĵ) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) (\mathcal{R}) (Ĵ) (Ω) (Ω) (\mathcal{R}) (Ω) (N) (Ω) (Ω) (N) (Ω) (Ω) \mathcal{R} Ω Ω Ω) (Ω) (Ω) (Ĵ) \mathcal{N} (Ω) (Ω) (Ω) (Ω) Ω (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) Ω (Ω) (N) (Ω) \bigcirc \bigcirc (\mathfrak{I}) \bigcirc \bigcirc \bigcirc \bigcirc (Ω) (Ω) (\mathcal{R})

AUTHORIZED FOR EXPORT ID

 (\mathcal{R}) \mathcal{O} (\mathcal{R}) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) Ω) (Ω) (N) (Ω) (Ω) (N) (Ω) Ω (Ω) (\mathfrak{D}) (Ω) (Ω) (Ω) (Ω)

SOURCE OF ELIGIBILITY

- ③ Healthcare Organization Data
- ① Linked Claims Data
- ① Linked Patient Reported Outcomes Data

НСО	Total Patients	Linked Patients	Linking %
HCO 1	1,971,715	1,322,343	67%
HCO 2	918,569	693,199	75%

- Matches based on 99% probability
- Potential for pool and depth/breadth increase

нсо	Orphan Patients	Orphan Patients Recovered	% Recovered	% Patient Pool Increased
HCO 1	928,257	462,536	50%	44%
HCO 2	3,701	1,017	27%	0.1%

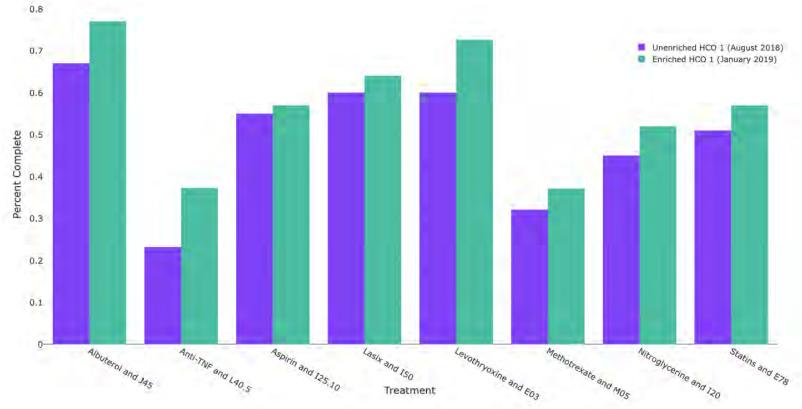
нсо	HCO Death Data	Linked Death Data	Death Addition	% Increase
HCO 1	144,264	309,462	271,686	188%
HCO 2	12,615	36,134	25,978	206%

НСО	HCO Facts	HCO Facts for Linked Patients	New Linked Facts	Depth, Breadth Potential Increase
HCO 1	1,046,431,944	845,492,762	326,163,485	39%
HCO 2	299,453,541	241,722,712	106,539,304	44%

- Orphan patient: a patient w/o any facts before linking
- Patient pool increased

- Depth of deceased knowledge increased
- Decease pool increased

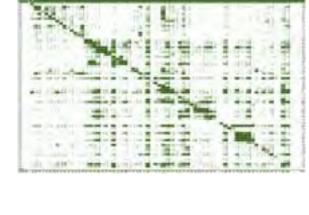
- Potential for clinical depth/breadth increase
- Potential for longitudinal increase

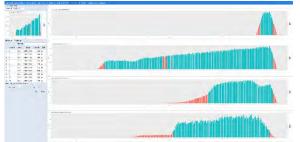

LINKING: RESULTS

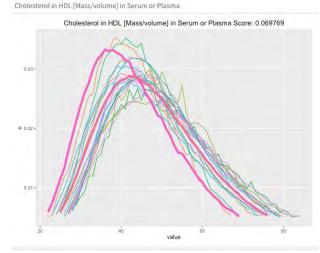
Unenriched HCO 1 (August 2018) Enriched HCO 1 (January 2019) • •

	RA Patients	# with 5yrs+ span	% with 5yrs+ span	
Unenriched	3,540	1,650	47%	
Enriched	4,160	3,220	77%	

- Increase in completeness
- Increase in longitudinally






LINKING: WHAT'S NEXT

- Linking throughout our network
- On-going assessment of linking
 - Quality of matching
 - Depth/breadth significance
- Development of standard metrics
 - Transparent to community

HCOs	Linked Patients
HCO 1, HCO 2	2,035
HCO 1, HCO 2, HCO 3	34

THANK YOU!

125 Cambridgepark Drive, Suite 500 Cambridge, MA 02140 USA

857.285.6037

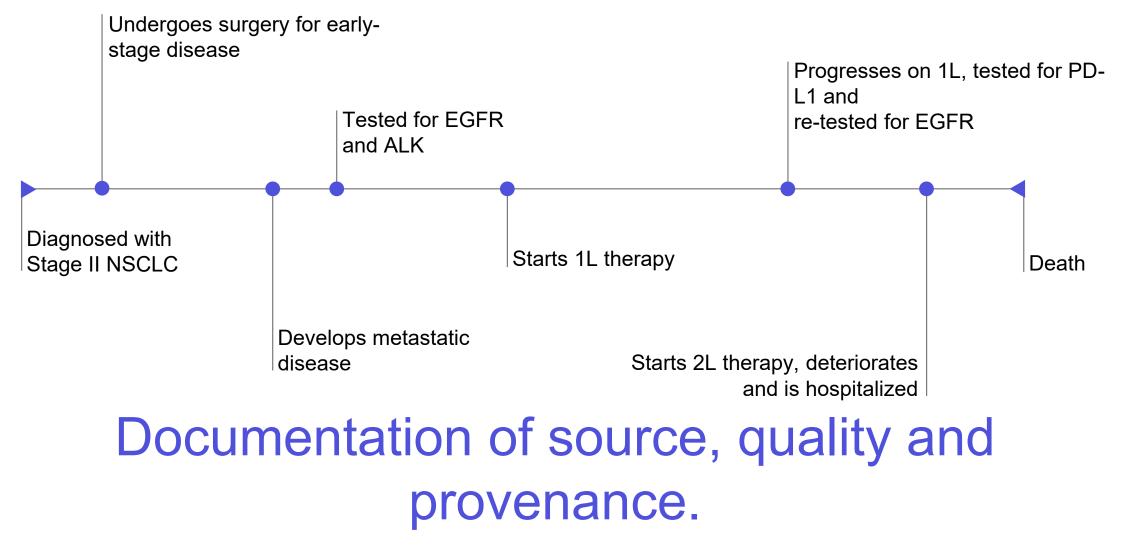
join@trinetx.com

trinetx.com

Session III: Linking Multiple Data Sources

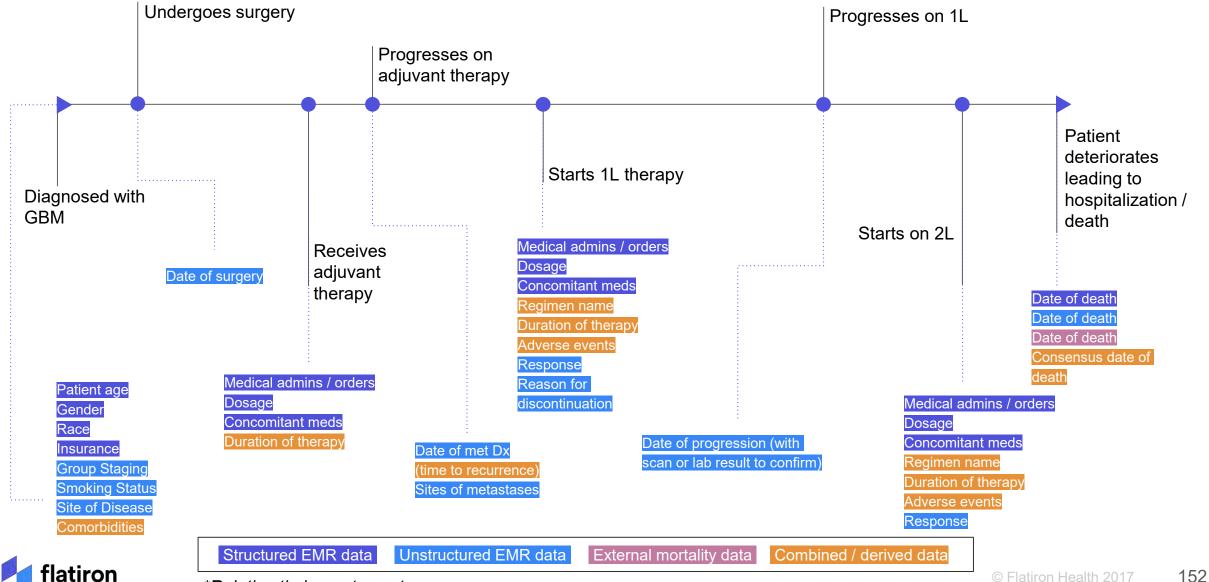
BREAK

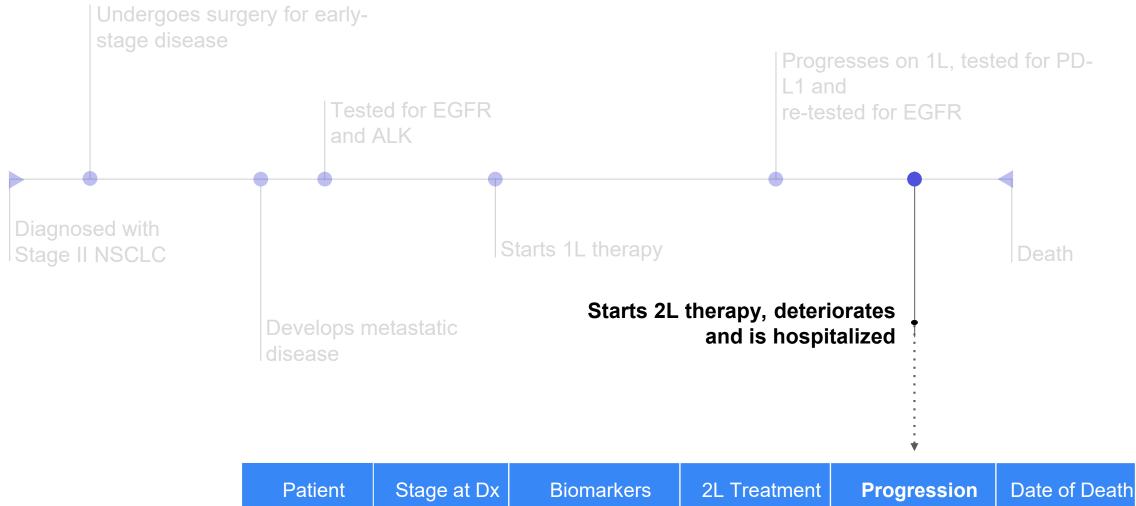
Session IV: Submitting Data Documentation for Traceability and Auditing


Session IV: Documentation for Traceability and Auditing

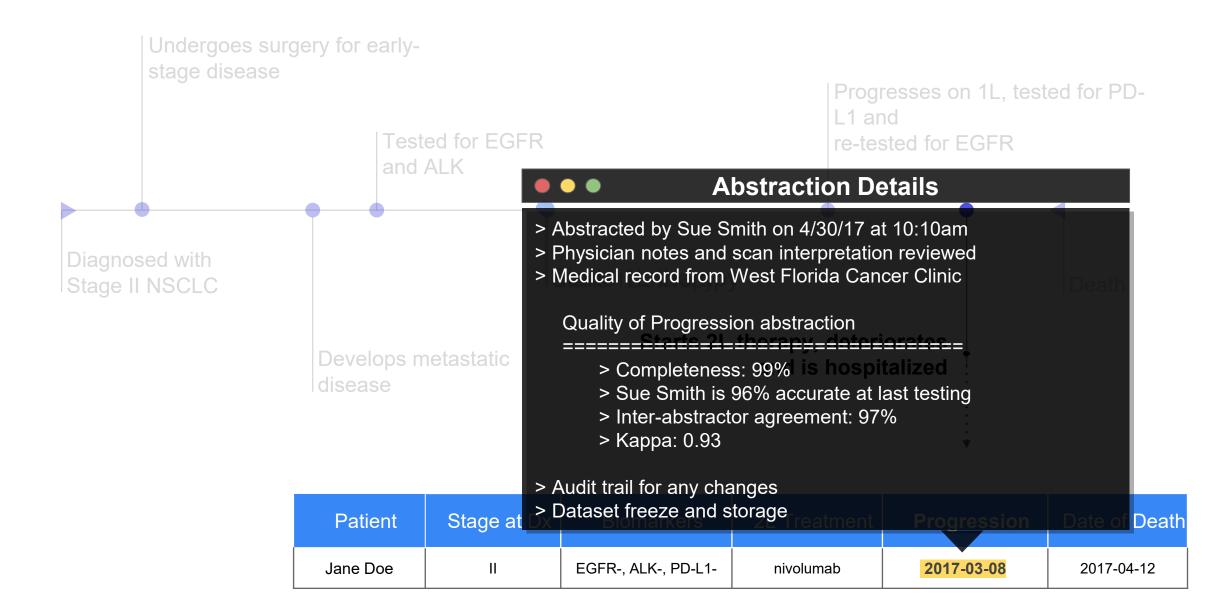
Amy Abernethy, MD, PhD

Chief Medical Officer / Chief Scientific Officer & SVP - Oncology, Flatiron Health (a member of the Roche Group)


Adjunct Professor of Medicine, Duke University School of Medicine



A comprehensive view of the patient journey


*Relative timing not exact

Jane Doe	II	EGFR-, ALK-, PD-L1-	nivolumab	2017-03-08

2017-04-12

Clinical Pharmacology & Therapeutics

Explore this journal >

Early View

linical Pharmacolog Therapeutics

Browse Early View

Articles

Online Version of

Record published before inclusion in an

issue

0

open Access 💿 🛈 Creative Commons

Development

flatiron

Harnessing the Power of Real-World Evidence (RWE): A Checklist to Ensure Regulatory-Grade Data Quality

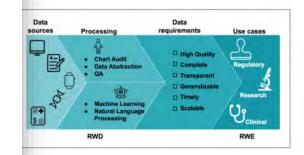
Rebecca A. Miksad, Amy P. Abernethy 🖂

First published: 6 December 2017 Full publication history

DOI: 10.1002/cpt.946 View/save citation

Cited by (CrossRef): 0 articles for updates Citation tools

Abstract


The role of real-world evidence (RWE) in regulatory, drug development, and healthcare decision-making is rapidly expanding. Recent advances have increased the complexity of cancer care and widened the gap between randomized clinical trial (RCT) results and the evidence needed for real-world clinical decisions.[1] Instead of remaining invisible, data from the >95% of cancer patients treated outside of clinical trials can help fill this void.

DEFINING RWE

elements.[2]

RWE QUALITY

RWE is generated from high-quality data that are 1) I from relevant RWD sources, 2) cleaned, harmonized, ed to fill in gaps, and 3) include endpoints. Quality need to encompass the entire process to generate RWE, a sources and processing to defining appropriate use gure 1).

Figure 1. Open in figure viewer | Download Powerpoint slide

The journey from data to evidence. Real-world data (RWD) are data that are routinely collected in the form of electronic health records (EHRs), patient disease registries, wearables, genomic datasets, medical claims registries, and others. These data can be aggregated, linked, and processed to produce key conclusions in the form of real-world evidence (RWE). The proposed checklist can be used to assess if the quality of the RWD is regulatory-grade.

mal RWD source depends on the RWE hypothesis and .[3] As the EHR is a contemporaneous (prospective or ctive) account of the clinical narrative, it provides al details and longitudinal follow-up for outcomes. The

Health 201<u>8 155</u>

Meta-characteristics of RWD and RWE Regulatory grade RWE, a potential checklist

Clinical Depth

Data granularity to enable appropriate interpretation and contextualization of patient information.

Completeness

Inclusion of both structured and unstructured information supports a thorough understanding of patient clinical experience.

Longitudinal Follow-up

Ability to review treatment history and track patient journey going forward over time.

Quality Monitoring

Systematic processes implemented to ensure data accuracy and quality.

Timeliness / Recency

Timely monitoring of treatment patterns and trends in the market to derive relevant insights.

Scalability

Efficient processing of information with data model that evolves with standard of care.

Generalizability

Representativeness of the data cohorts to the broader patient population.

Complete Provenance

Robust traceability throughout the chain of evidence.

Thank you

amy@flatiron.com

@dramyabernethy

© Flatiron Health 2018

Appendix

Session IV: Submitting Data Documentation for Traceability and Auditing

Data documentation in the Aetion Evidence Platform

Jeremy Rassen, Sc.D. President & Chief Science Officer Aetion, Inc.

January 2019

The platform approach

At Aetion, we take a *platform* approach that combines:

- Data ingestion
- Data storage
- Data measurement
- Analytic workflows

This allows for testing, validation, and full **traceability and transparency**.

It also creates a "closed system" for documenting/archiving/auditing data transformations and provenance.

Stage 1 validation & reporting

Verify: do the loaded data match the provided data?

Part 1: rules-based "sanity checks"

• Do the imported datasets meet technical expectations?

Part 2: semi-automated validation

• Do the imported datasets meet scientific expectations?

Stage 2 reporting & versioning

As data are used, document each and every step.

Part 1: archived, auditable reporting

 Provide *natural language* reporting on how data are put to use in a study (e.g., data element -> measurement)

Part 2: comprehensive versioning

 Provide traceable versioning (provenance and history) of each measurement; taken together, becomes a full catalog of how a study came to be

"Stage 3" and beyond

Continue to document study beyond the data steps

- Epidemiological assumptions applied (eg, exposure grace period)
- Statistical methods used
- Relevant literature
- Results

Ae-ti-on

From aetiology (Greek):

The cause of diseases and disorders; the investigation or attribution of the cause or reason for something.

Session IV: Submitting Data Documentation for Traceability and Auditing

Data Documentation for Traceability and Auditing

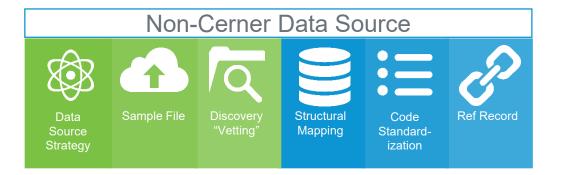
J. Marc Overhage, MD, PhD

VP Intelligence Strategy and CMIO

January 22, 2019

Systematic Approach to Managing Big Data

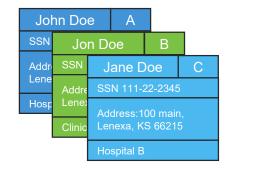
Data Integration


Data onboarding into HealtheIntent

• Data *sources*, data *sets*

- Data source: A software system that sends data to HealtheIntent. This is typically a vendor (i.e. BCBS)
- Data Set: Set of data file(s) from a Data Source that can be mapped to a data model in HealtheIntent (ie. medical claims, results, medications, demographics, allergies)
 - Many formats supported: HL7, X12, CCD, XML, CSV flat files
- File Frequency
 - how often will new data be received/extracted and uploaded to HealtheIntent

Loading Multiple Data Sources


Data Vetting:

Data Vetting is the process of analyzing the raw data files for content, format, and consistency before we on-board into HealtheIntent

 This process requires collaborating sessions between Cerner, Client and Vendor and can take a few weeks to complete.

Reconcile records to a single source of truth

Identify like- reference records

SSN First name Phone DOB Last name Address Race Alias Gender Ethnicity No link | Manual | Auto link

> Determine similarity score to confirm records match

EID 2468			
Record ID A	Record ID B		
John Doe	Jon Doe		
SN 111-22-1234	SN 111-22-1234		
DOB 11/30/75	11/30/75		
100 Main, Lenexa, KS	100 Main, Lenexa, KS		

Assign unique EID number to linked records

Organize data into concepts

Aspirin (Multum d00170)

Allergies	Medications	
Conditions	Procedures	
Immunizations	Visits	
Lab results	Vitals	

Medication	Date	Source
aspirin 300 mg oral delayed release tablet	3/24/2014	Westwatch Bay
Medications Most recent	10/17/201 3	Baseline East
ASA 500 MG Oral Tablet Bayer Aspirin (Multum d00170)	9/23/ Mag	13, 2016 atch Bay
Aspirin	4/23/2013	Get Well Now
aspirin	2/18/2013	Westwatch Bay
Aspirin	5/14/2012	Baseline East
aspirin 300 mg oral tablet	6/20/2011	Get Well Now

Provenance Tracking

- Provenance definition
 - According to HL7 FHIR specification, provenance is a record that describes entities and processes involved in producing and delivering or otherwise influencing that resource. Provenance provides a critical foundation for assessing authenticity, enabling trust, and allowing reproducibility. Provenance assertions are a form of contextual metadata. Provenance indicates clinical significance in terms of confidence in authenticity, reliability, and trustworthiness, integrity, and stage in lifecycle, all of which may impact security, privacy, and trust policies.
 - Granularity of the entities device, individual, institution
 - Documents versus data
- Provenance complexities
 - Individual
 - Institution/Organization
 - Multiple facilities
 - Multiple EHRs
 - Multiple EHR domains
 - Non-EHR systems
 - Multiple source inference
 - Aggregation entities e.g. HIEs
 - Intermediaries and networks

Session IV: Submitting Data Documentation for Traceability and Auditing

Closing Remarks

Unpacking Real-World Data Curation: Principles and Best Practices to Support Transparency and Quality

Duke-Robert J. Margolis, MD, Center for Health Policy 1201 Pennsylvania Ave, NW, Suite 500, Washington, DC 20004 January 22, 2019

Duke MARGOLIS CENTER