The obesity epidemic in the United States is a rising and complex public health problem. In 2015-2016, the prevalence of obesity rose to 39.8% among adults in the US[1] Obese patients (BMI≥30) are also more likely to have many comorbid conditions: dyslipidemia, T2D, hypertension, coronary heart disease, psychiatric, and others[2]. Bariatric surgery is an emerging treatment for obesity as the total number of procedures in the US increased by about 60% between 2011 and 2018[3]. Bariatric surgery results in sustained weight loss and reductions in comorbidities, making it a highly effective treatment for morbid obesity[4]. While the high incidence of psychiatric comorbidities is well supported[5], little is understood about bariatric surgery’s relationship with antidepressant utilization and psychiatric disorders.

Objective/Focus Areas

Main Objective: To develop a narrative review of the literature to inform LMHO study

Focus Area 1: Impact of preoperative antidepressant usage on postoperative weight change

Focus Area 2: Effect of surgery on postoperative antidepressant usage

Focus Area 3: Pharmacokinetic effects of surgery

Literature Search

PubMed Search \rightarrow MeSH Terms \rightarrow Similar Articles/Cited By

MeSH Terms: (bariatric surgery OR gastric bypass OR gastrectomy) AND (Antidepressive Agents OR "Depression/drug therapy"[Mesh] OR "Depression/prevention and control"[Mesh] OR "Depression/therapy"[Mesh])

Data Extraction

Skin Abstracts \rightarrow Skin Papers \rightarrow Extract Data Elements \rightarrow Categorize Papers

Data Elements: Years of Data; Surg Procedures; Research Question; Follow-up: Study Duration/%; Sample Loss; Sample Size: Treatment/Control Group; Treatment/Control Group: Descriptor, % Female, Mean/Med Age, Mean/Med BMI, Psychiatric Diagnoses; Methods of Assessment; Medications; Specific Numeric Results; Extra Notes

Introduction

The obesity epidemic in the United States is a rising and complex public health problem. In 2015-2016, the prevalence of obesity rose to 39.8% among adults in the US[1] Obese patients (BMI≥30) are also more likely to have many comorbid conditions: dyslipidemia, T2D, hypertension, coronary heart disease, psychiatric, and others[2]. Bariatric surgery is an emerging treatment for obesity as the total number of procedures in the US increased by about 60% between 2011 and 2018[3]. Bariatric surgery results in sustained weight loss and reductions in comorbidities, making it a highly effective treatment for morbid obesity[4]. While the high incidence of psychiatric comorbidities is well supported[5], little is understood about bariatric surgery’s relationship with antidepressant utilization and psychiatric disorders.

Large Research Project Context

Long-term Mental Health Outcomes of Bariatric Surgery (LMHO): Comparing long-term outcomes (alcohol, antidepressants, etc.) of veterans who underwent bariatric surgery and veterans who did not

Veterans Affairs Population: Predominantly older males

Past Studies: Evidence of surgery leading to long-term weight loss (Figure 1)[6]

Association with UAU

Examining how

Veterans before surgery

Past Studies:

- **Evidence of surgery leading to long-term weight loss** (Figure 1)[6]
- **Association with UAU**

Ongoing Study:

- **Examining how**
- **Veterans before surgery**

Main Objective: To develop a narrative review of the literature to inform LMHO study

Focus Area 1: Impact of preoperative antidepressant usage on postoperative weight change

Focus Area 2: Effect of surgery on postoperative antidepressant usage

Focus Area 3: Pharmacokinetic effects of surgery

Literature Search

PubMed Search \rightarrow MeSH Terms \rightarrow Similar Articles/Cited By

MeSH Terms: (bariatric surgery OR gastric bypass OR gastrectomy) AND (Antidepressive Agents OR "Depression/drug therapy"[Mesh] OR "Depression/prevention and control"[Mesh] OR "Depression/therapy"[Mesh])

Data Extraction

Skin Abstracts \rightarrow Skin Papers \rightarrow Extract Data Elements \rightarrow Categorize Papers

Data Elements: Years of Data; Surg Procedures; Research Question; Follow-up: Study Duration/%; Sample Loss; Sample Size: Treatment/Control Group; Treatment/Control Group: Descriptor, % Female, Mean/Med Age, Mean/Med BMI, Psychiatric Diagnoses; Methods of Assessment; Medications; Specific Numeric Results; Extra Notes

Results

Total: 10 (empirical studies), 5 (commentaries)

FA1 Weight Change (7)

Plaekke, 2019 (n=751): Continuous antidepressant use associated w/ reduced %EBMIL (SNRIs, TCAs)

Barr, 2019 (n=547): Diagnosis of depression (ICD-10 codes) or type 2 diabetes resulted in lower %EWL

Hawkins, 2020 (n=190): Antidepressant not associated w/ poorer %TWL but some classes have different effects

FA2 Antidepressant Change (7)

Mitchell, 2014 (n=2458): BS improves depression but declines 1 year after surgery

Booth, 2015 (n=6090): BS may cause initial reduction in clinical depression after surgery but not continued

Conclusions

- Conflicting findings on impact of antidepressants on weight loss (%EBMIL v. %TWL)
- Certain antidepressant classes may affect weight change differently (SNRIs)
- Antidepressants/Depression fell first and then rose
- Adsorption of drugs seems to be greatly altered
- Some consensus in focus areas but also discord between papers

Future Directions

- Inform ongoing LMHO Study about weight change by antidepressant class 5 years after surgery v. 1-2 years for most studies
- Need standardized measures for weight change
- More studies into the pharmacokinetic effects of different classes
- May suggest certain antidepressants are preferable
- Potential to guide better clinical practices

Acknowledgments

Thank you to Matthew Maciejewski, PhD for guiding me on this project, Virginia Wang, PhD for mentoring me, Adenike Adeyemo for aiding me, Librarian Brandi Tuttle for helping me with the literature search, and the entire LMHO group for supporting me. I would also like to thank Directors Ron Grunwald and Buz Waitzkin, Duke’s Initiative for Science and Society, the Duke-Margolis Center for Health Policy, and the Huang Fellows program for funding this research.

References

