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Artificial Intelligence (AI) holds great potential for 
improving health and health care in the United States 
and globally through knowledge discovery, detection 
and monitoring of diseases, development of novel digital 
therapeutics, and augmentation or automation of clinical 
decision-making for diagnosis and treatment of patients. 
Some of these AI-enabled software tools will be medical 
devices (“Software as a Medical Device” or SaMD) that  
are regulated by the U.S. Food and Drug Administration 
(FDA), while others will fall outside of FDA’s authority.  
For all AI-enabled SaMDs, it will be critical to continuously 
evaluate the tool after deployment and over time to 
ensure that it is performing within the range expected. 
This may be a particular challenge for clinical decision 
support (CDS) tools developed with machine-learning  
(AI/ML) due to non-standardized electronic health records 
systems and ever-changing workflows. 

Using high-quality real-world data (RWD) to generate  
real-world evidence (RWE) of the clinical performance of 
SaMDs may allow evaluations to be done more efficiently 
and can create a broader sense of how well the software 
tool works in multiple subgroups of interest (individuals 

Executive Summary 

of different ages, races, geographical areas, associated  
co-morbidities, etc.). This report explores what type 
of data would be needed to perform these types of 
evaluations, if those elements exist in common RWD 
sources, and current challenges in collecting and using 
such data. While many of the key takeaways apply more 
broadly, this report focuses on challenges in the context of 
post-market performance evaluations of AI/ML-enabled 
CDS tools. These insights and recommendations are drawn 
from a two-day virtual private workshop held in July 2020,  
a literature review, and informational calls. 

The report provides recommendations for consideration 
in the continued development of a future regulatory 
model for software-based medical devices. We separate 
these recommendations into three areas: performance 
measures, data access and privacy, and data sharing 
and security. Performance measures correlate with the 
specific benefit-risk ratios of CDS tools related to changes 
in their accuracy as the data environments change, 
new workflows or standards of care are introduced, 
or patient populations shift, and can further vary with 
potential inappropriate usage. Specific data elements 
that should be monitored include algorithm inputs 
and outputs, algorithm use characteristics, and patient 
outcomes. These elements are ideally standardized 
within and across data sources with consideration of 
performance bias in diversity of patient populations and 
generalizability across health systems. The accessibility 
of data to conduct performance evaluations depends 
on privacy protection regulations, including HIPAA, the 
Common Rule, and state and local laws, which can apply 
differently depending on the entity using the data. Some 
of these regulations may even require updates to better 
enable future real-time evaluation of CDS tools. Finally, 
when the correct data are available and can be accessed, 
the physical exchange should ideally occur on secure 
platforms governed by data use agreements.

This report explores what type  
of data would be needed to perform  
these types of evaluations, if those  
elements exist in common RWD sources, 
and current challenges in collecting  
and using such data. 
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The U.S. Food and Drug Administration (FDA) is interested in the use of RWD for the development  
and continued evaluation of artificial intelligence (AI)-enabled software products used in healthcare 
settings. Software tools built with AI are increasingly being recognized for their potential to improve 
healthcare. The definitions of AI and its subparts vary widely with a lack of consensus but for this paper 
are mostly based on previously published definitions in prior Duke-Margolis white papers. AI can be 
divided into two categories depending on how it is programmed. 

• �Rules-based AI uses previously validated information (e.g., clinical guidelines, risk calculators, 
published studies) to set up a series of clinically accepted weights or decision steps that lead  
to a prediction, diagnosis, or recommendation. 

• �Data-based AI, often referred to as machine learning (AI/ML), is trained using sets of labeled 
input data (called “training data”) and uses programmed processes to derive relationships 
between the inputs and the so-called “labels”.a The derived relationships are then used to predict 
how new input data would be labeled, which becomes a prediction, diagnosis, or recommendation 
for the clinician in an AI/ML-enabled CDS tool (operational data). Once a tool that was developed 
through ML is in use, the model can continue to learn or be “fine-tuned” by incorporating new 
data (learning data). These changes can be made automatically each time a new labeled example 
is received (continuously learning algorithms) or the labeled examples can be stored for periodic 
updating of the tool (locked models) (Figures 1 and 2).

Introduction

FIGURE 1   BREAKDOWN OF RULES-BASED AI AND MACHINE LEARNING

Artificial
Intelligence

(AI)

Rules-Based
Uses clinically accepted  

rules to guide decision-making 
(using clinical guidelines,  

FDA labels, published  
literature, etc.).

Machine Learning
Uses data to learn without 

being explicitly programmed. 
Includes methods such as deep 
learning, logistical regression, 

random forest. 

Locked Model
While functions within the  

software are developed with  
data-based AI techniques,  

the software no longer  
changes with each use.

Continuously
Learning  

Algorithms
The software automatically  

changes with each use

a �This describes a specific type of machine-learning called “supervised machine learning” 
which is how most current AI/ML-enabled CDS tools are trained. 
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AI/ML-enabled CDS is used to aid decision-making 
around triage, diagnosis, and treatment of individual 
patients by incorporating AI/ML-enabled CDS tools into 
clinical workflows. A rules-based CDS tool could help the 
physician determine whether an individual patient needs 
an intervention based on medical professional society 
guidelines programmed into the tool. For example,  
to inform patient-specific dosage decisions, the tool  
could be fed a patient’s International Normalized Ratio 
(INR – a measure that outlines how quickly the blood 
coagulates) and track whether it drops or rises above  
a certain level. Using that input, the algorithm would 
make a recommendation for the appropriate dosage  
of anticoagulants to treat the patient. 

ML-enabled CDS tools, however, can map many  
clinical features to a particular outcome by generating a 
probabilistic assessment of the likelihood of the event or 
diagnosis. For example, a tool may analyze the pixel values 
of a digital x-ray and be able to predict if and where the 
foot is fractured. The example is relatively low risk given 

The Role of AI/ML-Enabled CDS in Healthcare

that it is overseen or monitored by a trained professional 
and a timely treatment action or intervention is important 
but not critical to prevent or mitigate long-term irreversible 
consequences. However, other examples of AI/ML products, 
such as adaptive implantable defibrillators that detect 
specific patterns in heart rhythms to determine whether 
to automatically administer a life-saving electrical shock, 
are higher-risk. FDA’s Center for Devices and Radiological 
Health (CDRH) recently published a list of legally marketed 
AI-enabled medical devices that shows the range of clinical 
risk levels.1

Software tools used in healthcare, like all medical products, 
should be safe and effective for patients and reduce 
burden on health care workers whenever possible. Some 
but not all software tools used in healthcare are considered 
“software as a medical device” (SaMD). CDRH regulates 
products classified as SaMD using their standard risk 
classification system (Class I [low risk], II [moderate],  
and III [high risk]). The 21st Century Cures Act, passed  
in late 2016, clarified FDA’s authority over certain clinical 
software tools and CDRH subsequently released draft 
Guidance on CDS tools in 2019 that outlines when  
a CDS tool is considered a medical device, with a focus  
on whether the user can “independently review the basis”  
of the recommendation.2 This distinction is important  
for AI/ML-enabled tools, which in many (but not all) 
instances are unable to provide a human-comprehensible 
“reason” for the prediction. 

AI/ML-enabled CDS is used to aid  
decision-making around triage, diagnosis, 
and treatment of individual patients  
by incorporating AI/ML-enabled CDS tools 
into clinical workflows. 

FIGURE 2   DATA USED IN BUILDING, TESTING, AND USING MACHINE LEARNING TOOLS

Algorithm Development

Training Data
�Data to initially train the system

Testing Data
�Data to help validate and improve  
the training algorithm

Algorithm Implementation

Operational Data
�Data to determine a course of action  
for an individual patient

Learning Data
�Data to modify or refine treatment to achieve 
better outcomes with future patients
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FDA defines RWD as “data relating to patient health status 
and/or the delivery of health care routinely collected 
from a variety of sources.” RWD can exist in many forms 
and includes data derived from electronic health records 
(EHRs), insurance claims and billing data, data from 
product and disease registries, and patient-generated 
health data from mobile devices or other settings.3 

FDA has considered RWD to support regulatory decisions 
and issued a Guidance document in 2017 on the use of 
these types of data to develop Real-World Evidence (RWE) 
to support regulatory activities.3 Under the appropriate 
conditions, analysis of high-quality RWD can produce RWE 
regarding benefits and risks of medical devices for pre- 
and post-market regulatory purposes (i.e., before and 
after a device has received marketing authorization and  
is used in clinical settings, respectively). RWD is more often 
used in the post-market period to evaluate long-term 
safety and effectiveness in broader patient populations.  
In March 2021, the FDA published a report with 90 
examples illustrating the use of RWE in medical device 
regulatory decisions.4 In addition, FDA’s Center for Drug 
Evaluation and Research (CDER) and Center for Biologics 
Evaluation and Research (CBER) have recently issued 
common draft Guidance on the use of RWD in drug 
and biologics regulatory applications5 for different data 
sources,6,7 including the standardization of RWD elements.8 

FDA has expressed interest in RWD and RWE for the 
development and evaluation of SaMD and AI/ML-enabled 
SaMD partly because of the rapid product lifecycle and 
frequent updates associated with the development 
of such tools. In 2017, FDA introduced a software pre-
certification pilot program.9 The overall goal of the 
pre-certification pilot was to provide more streamlined 
and efficient regulatory oversight of software-based 

medical devices developed by manufacturers who 
have demonstrated a robust culture of quality and 
organizational excellence. The pilot program’s scope  
was SaMD generally and included AI/ML SaMD. The most 
recent draft of the working model was released in January 
2019.10 This model continued to envision strong post-
market surveillance, with an emphasis on Real-World 
Performance Analytics (RWPA) that included continued 
evaluations on accuracy, safety, and effectiveness, among 
other measures. 

More recently, a 2021 FDA Action Plan specifically on AI/
ML-based software stated that “gathering performance 
data on the real-world use of the SaMD may allow 
manufacturers to understand how their products are 
being used, identify opportunities for improvements, 
and respond proactively to safety or usability concerns.”11 
Therefore, RWD could potentially be used not only 
for safety surveillance, but also for regularly updating 
software tools. For example, FDA has been exploring the 
use of “change control plans” submitted by developers 
when applying for FDA authorization that would allow 
updates to software tools as described in those pre-
approved plans without additional regulatory approval. 
While official guidance is being developed,12 the Medical 
Device Innovation Consortium (MDIC) has been working 
on a template for change control plans.13 These updates 
could either happen iteratively through a series of locked 
models or by using data in continuously learning modelsb 
in the future.11 An example of a pre-specified change 
control plan for locked algorithm updates was included  
in a recently cleared FDA application for a tool to assist 
medical professionals in the acquisition of cardiac 
ultrasound images.14 

Finally, in October 2021, the FDA, along with other 
global regulatory agencies, released a guiding principles 
document on good machine learning practices for 
medical device development that is intended to be 
expanded upon in the future.15 Representativeness  
of the intended patient population, clinically useful 
outputs, and continued monitoring for performance 
are some of the key aspects of these guiding principles  
as well.

The Use of RWD in Regulatory Surveillance and Decision-Making

FDA has expressed interest in RWD and 
RWE for the development and evaluation 
of SaMD and AI/ML-enabled SaMD partly 
because of the rapid product lifecycle  
and frequent updates associated with  
the development of such tools. 

b �This paper does not go into detail about continuous learning models as, to our knowledge, none have been authorized for use by FDA. However, it is 
very possible that these tools would use RWD as their continuing training data and may use RWD for automated performance checks.
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The evaluation of a CDS tool consists of four distinct 
phases, each with its own goals and processes:  
1) retrospective model evaluation;c 2) silent period 
evaluation;d 3) prospective evaluation;e and 4) ongoing 
monitoring. It is generally accepted that a cleared  
or approved AI/ML-enabled SaMD product performs 
well enough to use given its pre-market performance 
characteristics. However, as with any other medical 
device, it is important to monitor its use in the post-market 
to substantiate performance in broader real-world settings. 
In this report the focus is solely on the ongoing monitoring 
of a CDS tool during the post-market timeframe (phase 4). 
 

Key Considerations for Evaluation and Monitoring

Generally, CDS tools should be monitored for two 
potential categories of issues in the post-market: 
changes in performance of the CDS tool and inappropriate  
or variable usage of the CDS tool. 
 

Changes in Performance of the CDS Tool

The performance of the CDS tool itself may change 
over time. This can occur for many reasons, including 
changes in the clinical workflow, how data are entered into 
databases, and patient populations or standards of care. 
While the goal of silent evaluation is to verify the validity  
of the data flow, back-end EHR systems are dynamic—
their underlying architecture undergoes frequent changes 
and updates known as “refreshes.” These refreshes may 
“break” software tools that rely on data streams from 
outdated data structures. It is important to know which 
data elements feed a CDS tool and what may happen  
to the tool if certain data are no longer accessible. 

Clinical workflows and clinical standards of care also 
evolve over time. Most AI/ML-based CDS tools are not 
learning causal associations. Instead, the tools are learning 
risk factors that affect the probability of an outcome.  
For example, a tool may “learn” that a patient getting  

a laboratory test for Lyme disease means they are more 
likely to have Lyme disease, since clinicians only order 
the test for patients who may have been exposed or 
display symptoms consistent with the disease. However, 
if that laboratory test becomes standard of care – i.e., the 
test is ordered for all patients – then the test is no longer 
informative for this reason, and the previously learned 
association is invalid. When clinical workflows change, 
it is important to understand how that relates to the 
performance of the CDS tool itself. 

Finally, changes in the underlying patient population 
may affect CDS tool performance, and the characteristics 
of specific sites where the tool is applied are therefore 
important. The characteristics of patient populations can 
vary widely between hospitals. The patient population  
is likely to differ in some respects in new settings  
where the CDS tool is implemented, as opposed  
to the setting(s) where it was developed and tested.  
If these differences are substantial, the performance  
of the tool may change. 

The topic of site-specific performance of AI/ML software 
tools was raised multiple times at a February 2020 FDA 
public meeting on AI in radiological imaging due to 
concerns that performance may differ across care 
locations or that AI/ML-enabled software tools may 
need to be customized to individual care systems’ IT 
infrastructure.16 It was notable that this was emphasized  
in a meeting addressing radiology software tools, 
as imaging data are generally more standardized and 
interoperable than many other types of health data. 

The importance is further highlighted by two recent 
examples: a sepsis prediction model integrated into 
the EHR software system from a large vendor17 and a 
pneumonia screening algorithm for x-rays.18 The sepsis 
model was developed at three sites and displayed 
good performance. However, an independent analysis 
at a large academic hospital that was not part of the 
model development found that its performance was 

Post-Market Evaluation of AI/ML-Enabled CDS Tools

c �During retrospective model evaluation the proposed model is tested on retrospective data. The retrospective data are distinct from data that were  
used to develop the algorithm. The goal is to ensure that the tool has the expected operating characteristics with respect to discrimination, calibration 
and decision rule performance.

d �During silent period evaluation the tool is implemented into the real-time environment but is not used by clinicians. The goal is to ensure that the tool 
performs prospectively in the way it performed retrospectively. Since data flows through an EHR system differently than how it is stored, it is important  
to test that predictions or scores are calculated in the expected way.

e �During prospective evaluation the tool is placed into production and used. The goal is to ensure it is properly used by the target user (e.g., nurses, doctors, 
care managers) and that relevant clinical decisions are made in response to the tool.
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largely inadequate, mainly due to a low sepsis detection 
rate. For the pneumonia screening algorithm, training 
was performed on more than 150,000 x-rays from three 
hospital systems. The study demonstrated that real-world 
performance on chest x-rays from other hospitals was 
significantly lower than on the x-rays used to validate  
the model from the original hospital.
 

Inappropriate or Variable Usage of the CDS Tool

CDS tools require human interactions and decision-
making. Every CDS tool is different in the way it presents 
information to, or interacts with, the user. Some tools 
will display a clear decision rule (risk vs. no-risk) with 
an associated action the user should take, while others 
display more qualitative decision rules (high/medium/
low risk) without a specific associated action. Others will 
simply present a predicted risk and leave it up to the user 
to decide how to use that information. The less directive 
a CDS tool is, the more influential clinical judgement 
becomes. As such, it is important to monitor what clinical 
actions are taken in response to the tool’s outputs  
to determine overall clinical effectiveness. In addition, 
usability of the CDS tool should be tested pre-market 
(e.g., through human factors review) and included  
in performance evaluation in the post-market period. 

Relatedly, usage of CDS tools often varies. It is important 
to note that FDA does not regulate how medicine is 
practiced, and healthcare professionals are allowed to use 
a lawfully marketed medical device “off-label” in clinical 
practice. However, FDA does have interest in making 
sure devices are clearly labeled to avoid user confusion 
about the manufacturer’s intended use and ensuring that 
manufacturers adequately disclose risks of off-label uses.  
In addition, FDA monitors the safety of common off-label 
uses and can respond if new significant risks are detected. 
 

Additional Considerations

Within the monitoring framework discussed above there 
are several additional considerations that can lead to 
variability in performance, create potential undesired 
effects, or drive the (inappropriate) use of CDS tools.
 

Health Equity and Performance Disparities 

Since many CDS tool algorithms are trained on 
retrospectively collected RWD, it is possible for them  
to “learn” systemic and structural biases that exist within  

the standard provision of care based on factors such  
as age, sex, race, socio-economic, and insurance status.  
In these scenarios, it is possible for the use of CDS tools –  
particularly CDS tools that direct additional care or services 
– to perpetuate those biases. As such, it is important 
to assess actual model performance within different 
population subgroups based on these factors or on 
characteristics that are relevant to the intended use of the 
specific tool. For example, a CDS tool that is trained within 
one demographic subgroup may not perform as well in 
other demographic subgroups.  When such problems 
occur, it may be necessary to recalibrate or retrain the 
model with more representative source data. The recent 
guiding principles by regulators15 and the CDRH 2022-2025 
Strategic Priorities19 have emphasized these points as well.
 

Confounding by Medical Intervention  

One of the challenges of ongoing monitoring is that 
patients are receiving interventions in response to 
the tool’s output, and the chosen interventions may 
vary from one setting to the next. This can largely 
depend on variations in adoption of clinical guidelines, 
system protocols and procedures, and institutional 
policy requirements. If a tool is effective, then high-
risk patients will receive interventions that (hopefully) 
prevent adverse health outcomes. When this occurs, it 
could appear, from the naïve evaluator’s perspective, 
that the patient was erroneously classified as being 
at high risk. This has been referred to as confounding 
by medical intervention.20 While clear solutions do not 
currently exist, the issue highlights the importance of 
tracking not only what a patient’s assessed risk was, 
but also what actions were taken in response to that 
risk, in order to properly evaluate the CDS tool.

Since many CDS tool algorithms are  
trained on retrospectively collected RWD,  
it is possible for them to “learn” systemic  
and structural biases that exist within the 
standard provision of care based on factors 
such as age, sex, race, socio-economic,  
and insurance status. 
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Recommendations

Given the analyses discussed above, the following data 
elements will generally be required to evaluate software  
tool performance: 

• �The model score, prediction, or recommendation 
(model output). 

• �The observed outcome or an alternative 
comparator (comparison to output).

• �Model inputs (operational data). It may also be 
important to assess whether the inputs for the 
algorithm were “correct” (as opposed to whether  
the inner workings of the algorithm are sound) 
in the sense that they were concordant with the 
patient’s actual status. For example, if having 
diabetes is an important input variable, data 
collection should include checking whether 
the patient’s records and the data input to the 
algorithm contain the same measured glucose 
values. If the data sources differ, the tool will 
produce a different output than a human provider, 
even if it is working as intended.

• �Demographic subgroup analysis variables. 

If the effect on patient outcomes is important for regulatory 
use, then additional data points may need to be captured, 
regardless of whether providers follow the algorithm’s 
recommendations. These would include:

• �Did the healthcare professional act on the 
algorithm’s output/recommendations? How so?

• �What other actions (external to algorithm  
use) were performed that might have influenced 
outcomes, potentially confounding the 
relationship between algorithm performance  
and patient health status? (e.g., early action  
or additional treatments)?

The required data elements may not always be available 
depending on the use-case of the CDS tool. In particular, 
collecting information on relevant external factors 
other than the CDS tool is quite complicated, as some 
interventions may not be captured. In addition, even if 
relevant external factors were captured, it is also important  
to have temporal information regarding such factors to 
accurately determine how the CDS tool, or other actions 
pertaining to a patient, influenced the care pathway 
or a patient’s health outcomes. In other words, can we 
capture the real-world context around whether those 
external factors or interventions occur after the CDS tool’s 
recommendation? Is it possible they were influenced by 
that recommendation? Answering these questions requires 
highly detailed data collection and can be difficult even 
with complete data. Regardless, public reporting of post-
market performance should provide sufficient information 
to ensure transparency, build public trust, and support 
ongoing regulatory oversight.

Table 1 summarizes the considerations for the information 
and data that should ideally be captured in the post-market 
setting related to CDS tool performance assessment, where 
those data may be located, and how they may be stored. 
Collection of additional data should be considered based  
on the specifics of the CDS tool and its intended use and 
risk determination.

Finally, there are other features beyond accuracy and 
improvements in patient outcomes that contribute to the 
overall “performance” of an AI-enabled software tool 
(such as ease of use or compatibility with on-premise 
IT systems), but those are generally beyond the scope 
for this paper. An initiative that dives into some of these 
issues is the Accelerated Digital Clinical Ecosystem 
(ADviCE). 21
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TABLE 1   �Real-World Data Generally Needed for Post-Market Evaluation  
of AI/ML-Enabled CDS Tools

Category of  
Information 

Data 
Elements*

Potential  
Location Examples Comments

Algorithm  
Inputs/Subgroup 

Analysis

Demographics

Socio-economic 
factors

Medical history

Age, sex, race

Insurance status

Diagnoses, procedures, 
medications, vitals, labs, 

symptoms, imaging, 
physiological monitors, 

data internal to a  
medical device

• �Race is an important data  
element to allow subgroup  
performance analysis but 
should be considered carefully 
before used as an input.

• �Insurance status is a commonly  
used proxy, more direct mea-
sures are not generally available 
in common sources of RWD

• �Symptoms (e.g., subjective  
physical observations [sleep, 
appetite etc.]) are commonly 
unstructured (free text/notes)

• �Data internal to a medical  
device (e.g., waveforms from  
an implantable defibrillator)  
are not commonly found in RWD 
sources (but could potentially  
be extracted from the device)

• �Data definitions may not be  
standardized within or across 
health systems

Algorithm  
Outputs

Based on  
intended use

Risk score, diagnosis, 
suggested action

• �Not always stored in common 
RWD sources; developers could 
build in this functionality

Comparator  
(observed  
outcome  

or another  
comparator)

Based on  
intended use

Vitals/physiological 
monitoring 

Outcomes such  
as diagnosis,  

(re-)hospitalization, 
death

• �Real-world diagnosis will  
be available, but may not  
be a reliable comparator  
if subjective or if influenced  
by the algorithmic prediction

• �RWD comparator outputs  
may not always be available;  
consensus expert opinion  
utilizing health records can be 
used in cases where observed 
outcomes are not available, or  
if the outcomes were potentially 
adverted by the prediction

Patient  
Interventions

Based on  
intended use

Medication  
administration,  

procedures, other 
patient actions

• �Billable procedures and treat-
ments will be captured within 
RWD sources, but may be  
difficult to determine causality

• �Some interventions may not be 
captured in any RWD sources 
(e.g., change in patient position 
to prevent pressure ulcers)

KEY

Electronic Health Record 
(EHR) or ancillary EHR  

data systems

Internal  
device data

RegistryClaims

( (

*�Specific data elements depend on the intended use of the CDS tool and can vary. EHR electronic health record; RWD real-world data 
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Current RWD Collection Methods

The scope of data elements discussed above may or 
may not be available in hospitals or care settings and 
may also depend on that health system’s EHR systems 
and workflows. Some of these RWD elements would 
be in databases that co-exist with hospital EHR systems 
rather than integrated into the main EHR record itself. 
If the particular healthcare system where the CDS tool 
is deployed is not integrated with patients’ primary and 
specialist care, medical history data may be incomplete. 
This would create potential issues if the CDS tool, for 
example, relies on inputs related to medications that 
are prescribed or filled in one setting but such data are 
not available in the other, or where patient data are only 
available during a certain timeframe of a patient’s life 
and important longitudinal information is missing. Other 
data elements may not traditionally live in EHRs yet exist 
in claims and billing data, data from product and disease 
registries, patient-generated health data, and other 
potential ancillary data sources. 

CDS tools can operate in a wide variety of care settings, 
but the input and output data needed for post-market 
evaluation can likely be found within the same data systems 
where CDS tools are already operating. Collecting these data 
would be relatively straightforward. However, information 
such as whether and how clinicians use the algorithm’s 
output, or patients’ long-term health outcomes, may be 
found in different data systems, or may not be recorded 
and digitized at all. For example, administering a medication 
will most likely be captured, but changing the position of a 
patient at risk of pressure ulcers may not be documented.

Challenges in RWD Collection
 

Availability of Appropriate and  
Representative Source Data 

Manufacturers attempting to use RWD to evaluate post-
market performance, particularly if one of the endpoints 
involves longer-term patient outcomes, may need to 
link across multiple different databases covering a 
fuller spectrum of an individual patient’s health journey. 
This linkage process generally requires unique patient 
identifiers, meaning that de-identified data, which is often 

easier to access, may be less useful for this purpose. 
And while linking across data sources can add additional 
information about patients, it is generally time-consuming 
and expensive. It can also introduce bias if there are 
differences in the data quality between these sources. 

Manufacturers may find that establishing appropriate  
data collection mechanisms at the source – that is,  
at sites where the algorithm is used – is more efficient 
and accurate until ongoing interoperability efforts bear 
more fruit. Care will need to be taken to ensure that 
sites selected for post-market evaluation are diverse 
geographically, demographically, and socio-economically  
to effectively evaluate generalizability of products. 

However, there are promising approaches in the medical 
imaging space where such interoperability efforts are 
starting to pay off, including the “assess-AI” platform of 
the American College of Radiology’s (ACR) Data Science 
Institute. This platform is a clinical data registry capturing 
algorithm effectiveness at the point of care as well as 
metadata related to specific imaging exams (including 
device used and relevant patient information).22 Data 
for the registry are collected through an existing 
software tool that is widely available across hospital 
systems. The creation of such a centralized registry 
operated by a respected non-profit entity addresses 
many of the challenges discussed in this report. It allows 
manufacturers to meet their post-market surveillance 
requirements and clinical sites to obtain regular reporting 
on the algorithm’s performance in patients. However, 
as discussed earlier, imaging data are generally more 
standardized and interoperable relative to other types 
of health data. A centralized registry may therefore not 
necessarily be the right or most efficient choice in all 
situations, but ACR’s effort is one approach that might 
be adapted to further facilitate real-world performance 
assessments.

As AI/ML algorithms are deployed in the real world, it is 
crucial to assess whether they meet their labeled standards 
across different patient demographics, morbidities, and 
health care systems. FDA’s AI/ML Action Plan highlights 
the need for improved methods to evaluate and address 
algorithmic bias and to promote algorithm robustness.11 
As discussed earlier, it is possible for CDS tools to “learn” 
systemic and structural biases that exist within the 

Existence and Quality of RWD for Post-Market Evaluation of CDS Tools
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standard provision of care based on demographic factors 
such as age, sex, race, and socio-economic status. In 
addition, socio-economic status and social determinants  
of health, which are major drivers of health care delivery 
and outcomes, are generally not well captured in RWD 
sources. This is also true for patient-reported outcomes 
(PROs) and genomic data. Health system factors such  
as workflows, available medical equipment, and 
common insurance requirements can also introduce 
bias into the software tools. These biases can affect the 
resulting algorithm, which may cause the algorithm to 
perpetuate and potentially magnify health disparities 
or make mistakes as it is scaled across different health 
systems. It will be tempting for companies to collect 
RWD in large academic healthcare centers or integrated 
care systems where staff are more experienced in data 
analysis and data are generally of higher quality and 
more standardized, but some of the most convenient, 
most usable sources of data will have systemic biases 
that must be accounted for. It is critical for FDA and 
manufacturers to carefully consider performance in 
diverse sets of both patients and health systems where 
these tools are being used. 

Data Quality

Even if all the required data for adequate post-market 
performance evaluation are available and properly 
retrievable across all their sources, there may still be 
issues regarding the quality of that data in the absence 
of generally accepted quality standards. CDRH’s 2017 
Guidance on RWE for regulatory decision-making highlights 
the importance of relevance and reliability of RWD in 
medical devices.3 Relevant RWD captures sufficient detail 
on device use, exposures, and outcomes in the appropriate 
populations. Relevance also encompasses RWD’s usability 
– data elements must be analyzable using proper statistical 
methods in order to guide sound scientific and clinical 
judgment. Reliability refers to the assessment of the data 
collection process itself, including whether the people 

and processes in place during that collection and analysis 
provide adequate assurance that errors are minimized, and 
that data quality and integrity are sufficient. This includes 
pre-specification of data elements and their definitions 
and an understanding of the specific sources of the data as 
well as completeness and consistency across sites and over 
time.3 Common data models, such as OMOP, i2b2, Sentinel 
and PCORnet can help with such pre-specification, but 
any of these will require enhancements to accommodate 
relevant medical device-related fields. 

There are many factors that influence data quality within 
specific use-cases of CDS tool performance evaluation that 
need to be considered. Multiple groups within the medical 
device space have built on CDRH’s RWE Guidance to address 
these further, including the Duke-Margolis Center for 
Health Policy23,24 and the National Evaluation System for 
health Technology Coordinating Center (NESTcc).25 In the 
drug and biologics space, FDA’s common CDER and CBER 
Guidance specifically addresses the standardization of RWD 
elements for such purposes.8 

Recent findings from the pilot testing of the FDA’s software 
pre-certification program, published in September 2020, 
further exemplify the difficulties of collecting appropriate 
data for post-market evaluations of AI/ML-enabled CDS 
tools.26 As discussed earlier, the program calls for a pre-
specified RWPA plan that would enable appropriate data 
collection and reporting mechanisms. However, the report 
found that further refinements are needed to identify 
additional measures to support RWPA. Other work also 
needs to be conducted in outlining the mechanics for 
collecting RWPA data from multiple sources. This includes 
reducing reliance on solely manual collection of information 
and focusing on ways to use modern technology and 
leverage data from external sources. These action items 
were repeated as an important priority for CDRH in the 
January 2021 AI Action Plan.11 

The COVID-19 pandemic has shown that the creation  
of centralized medical data is possible in the U.S.,27  
even with the reality of a fragmented system of health 
records compared to other countries and the presence  
of overlapping or sometimes contradictory privacy laws  
at the federal, state, and local levels (discussed later). NIH’s 
N3C database currently includes more than six million 
de-identified COVID-19 patient records and has become 
one of the largest in the world, exemplifying that significant 
issues related to data sharing can be overcome for the right 
reasons and if the right incentives are put in place. 

Socio-economic status and social 
determinants of health, which are major 
drivers of health care delivery and  
outcomes, are generally not well captured  
in RWD sources. 
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Recommendations

To use RWD to efficiently evaluate the safety and 
performance of AI/ML-enabled CDS tools, policymakers  
and other stakeholders in this space will need to address  
the following persisting issues: 

• �Inconsistent and inefficient methods for  
capturing relevant data on algorithm accuracy  
and performance;

• �A lack of data on patient health status and  
long-term outcomes;

• �A lack of data on how physicians use  
(or do not use) algorithms’ outputs;

• �Inconsistent or lacking data across the  
continuum of a patient’s care;

• �Systemic biases within data sources that make  
it difficult to find representative data; and

• �Inconsistent data elements or definitions for  
data elements across sites of data collection.

Many of these issues also affect the use of RWD for 
evaluation of other medical products. Living frameworks 
developed by the Duke-Margolis Center for Health 
Policy23,24 and NESTcc25,28 around RWD quality and 
methods, recent CDER/CBER draft Guidance on RWD  
use,5-8 and further maturation of data linkage and 
exchange can provide a foundation for the establishment  
of improved data collection mechanisms. 

In addition, rich, interoperable datasets continuously 
collected from real-world clinical practice will be needed 
to train AI effectively. Programs such as the National 
Institutes of Health’s (NIH) Bridge2AI are focused on 
bringing together technological and biomedical experts 
with social scientists and humanists to help create 
datasets that are specifically suitable for ML purposes.29 

For RWD to be accessed legally and ethically, patient 
privacy must be a priority. Privacy and data access 
compliance issues vary, depending on whether RWE will 
be used by private-sector device manufacturers and 
software developers (for brevity, “developers”) or by the 
FDA. Multiple laws apply to these issues, including the 
Health Insurance Portability and Accountability Act of 1996 
(HIPAA), the Common Rule, State law, and FDA’s human 

subject protections. As discussed earlier, the 2017 FDA 
Guidance on Use of Real-World Evidence to Support Regulatory 
Decision-Making for Medical Devices3 and a more recent FDA 
publication4 gave examples of how RWE might be used 
for medical devices and CDS tools subject to regulation 
as medical devices.30 Some of these examples describe 
uses of RWE by device manufacturers, for example, to 
expand indicated uses for a device already in clinical use,  
to conduct post-market surveillance or post-approval 
studies required as a condition of FDA approval, or to serve 
as control groups in pre-market studies for new devices. 
Other examples describe uses of RWE by FDA, for example, 
to investigate emerging safety issues not detected during 
pre-market review. This section considers both regulators 
and developers and focuses mainly on the surveillance 
aspects of using RWD for CDS tools.

Privacy and Access to RWD for Regulatory Surveillance

For RWD to be accessed legally  
and ethically, patient privacy must  
be a priority.
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Selection of Applicable Laws and Regulations on Data Privacy

Health Insurance Portability and Accountability Act of 1996 (HIPAA): The HIPAA regulations set forth rules to 
protect covered information while advancing the ability to have the safe, secure sharing of health data, including 
limits on who can access and share patients’ health data and standards for data security when those data are 
collected or shared. These rules apply to “covered entities,” which generally include healthcare providers, health 
insurers, and their business associates who help process or analyze data from providers and insurers. 

Common Rule: The Common Rule, originally promulgated in 1991 and revised in 2018, is a set of regulations 
governing the ethics of research involving human subjects. These regulations are designed to protect human 
research subjects from harm and apply to all research conducted or supported by the federal government.  
Many U.S. academic institutions, through institutional review boards (IRBs), hold their researchers to these 
regulations regardless of funding.

FDA Human Subject Protections: These protections similarly aim to prevent harms to human subjects participating  
in research or clinical investigations to generate data for submission to FDA. In addition, FDA has regulations aimed  
at ensuring the quality of data from FDA-regulated studies. Depending on various factors (e.g., funding source and 
aims of research), a given study may be regulated by the Common Rule, the FDA human subject protections, both, 
or neither. 

State, Tribal, and Local law: State, Tribal, and local law also apply to health care information stored about patients. 
HIPAA does not override State, Tribal, and local law provisions that are more stringent (more protective) than HIPAA.

Access to and Use of RWD by Private  
Software Developers 

Developers can use any data (real-world data or clinical 
trial data) if the patients involved formally consent to 
that use. However, obtaining consent can be logistically 
difficult or even impracticable and, importantly, the 
patients that do consent may not be representative  
of the patient population on whom the software tool  
is being used. Because of that, developers may want  
to access more complete datasets, and there are 
methods to do that under HIPAA, each with their own 
benefits and challenges. When a software developer  
is not subject to the HIPAA Privacy Rule, there are often 
heightened privacy concerns about releasing RWD 
into its possession, even if de-identified, so healthcare 
providers may be more reluctant to share RWD. 

Whether a developer is covered by the HIPAA Privacy 
Rule31,32 depends on specific facts of its business model. 
Independent software developers (i.e., developers that 
are not affiliated with health care systems) often are 
not HIPAA-covered entities, although they might still 
fall under the Privacy Rule as business associates of 

hospitals and clinics with which they enter contracts.33,34 
In contrast, academic medical centers and teaching 
hospitals that develop CDS tools in-house typically 
would be HIPAA-covered entities because they are 
engaged in the provision of health care. 

The Privacy Rule does have various provisions allowing 
HIPAA-covered healthcare providers to share RWD  
with developers without patient authorization. For 
example, providers can share RWD in de-identified 
format.35 Yet many providers use HIPAA’s safe-harbor 
de-identification method,36 which can reduce the  
utility of RWD, for example, by deleting patients’ zip 
codes that might help uncover biases in CDS tools.  
The Privacy Rule also allows statistical de-identification, 
which could support modern computational privacy 
protections (privacy-by-design), but IRBs and data-
holding institutions continue to favor the safe-harbor 
method,35,37,38 and further workforce development may  
be needed to foster wider use of, and trust in, statistical  
de-identification. More broadly, de-identification can 
make it difficult to spot duplicative data entries or to 
link data from multiple sources to assemble useful 
longitudinal health records, as discussed earlier. Partially 
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When the software developer  
is a HIPAA-covered entity, access  
to RWD is simplified.

de-identified data can be shared as a “limited data 
set,” subject to a data use agreement restricting use, 
redisclosure, and re-identification.39,40 Identifiable data 
can also be shared, for example, if an IRB or privacy board 
approves a waiver of individual authorization, but many 
IRBs are reluctant to allow health systems to share data  
in identifiable format. 

Alternatively, the Privacy Rule allows HIPAA-covered 
providers to share data with FDA-regulated developers 
in the private sector to enable them to perform various 
tasks (such as adverse-event reporting or post-market 
surveillance) that FDA requires with respect to products 
already on the market.41 Such disclosures serve a public 
health purpose. Unfortunately, because FDA’s pre-
certification program is, at present, a voluntary program,  
it does not appear to set compliance “requirements”  
that would enable access to RWD using this provision  
of the Privacy Rule. 

Public health disclosures of RWD must comply with 
HIPAA’s “minimum necessary” standard,42 but that 
standard can allow identifiers to be shared if they are 
necessary to fulfill the requestor’s intended use of the 
data. Thus, HIPAA allows a covered entity to share such 
data if the recipient provides justification (for example,  
if the recipient explains that it needs the data to study 
biases in FDA-regulated software tools). However, if those 
data, once received, were to be repurposed for further 
model training or to expand or refine the labeling, that new 
use would be considered “research” (commercial research)  
and is outside the scope of HIPAA’s public health exception. 
A fresh HIPAA authorization for the research use (or an IRB/
Privacy Board waiver of authorization) should be obtained. 

When the software developer is a HIPAA-covered entity, 
access to RWD is simplified. A covered entity still must 
comply with the “minimum necessary” standard and only 
use data in research to the extent necessary to fulfill the 
purpose of the research. When CDS tools are developed 
in-house at a hospital or academic medical center, several 
additional HIPAA provisions can help provide access to 
needed RWD from that institution and potentially from 

other institutions. For example, the HIPAA Privacy Rule 
allows data to be used for business operational purposes 
(e.g., quality improvement studies, such as a study of 
how software tools perform in clinical practice) without 
individual authorization.43,44  This and various other HIPAA 
provisions may allow access to RWD to support AI/ML 
development, validation, and post-marketing studies; 
however, a fact-specific analysis is always required  
to assess whether a given proposed use fits within one  
of the available HIPAA pathways for access.  

The Privacy Rule also allows disclosure of data to public 
health authorities such as the FDA for various activities 
including public health surveillance and investigations.45 
This would allow the aggregated results of studies,  
as well as the underlying data, to be reported to FDA as 
necessary to support the Food, Drug, and Cosmetic Act.

It is unclear to what degree private-sector software 
developers will be subject to the Common Rule, which 
is triggered when an entity is conducting research that 
is federally funded, or to State or Tribal requirements 
that can be triggered depending on where the research 
takes place and what it involves. Regulatory uses of 
RWE by a private-sector company do not clearly fit the 
Common Rule’s definition of regulated “research,” and 
that is especially true under the new Common Rule, which 
expressly excludes public health surveillance from its 
research definition.46,47 Even if an activity does constitute 
research, it generally would not fall under the Common  
Rule if it is privately, rather than federally, funded. FDA’s 
human-subject protections for medical devices48,49 only 
apply to persons participating in a device clinical trial or 
persons on whose specimens FDA-regulated research is 
performed.50-52 The observational uses of RWE contemplated 
here seemingly do not fall under the authority of FDA’s 
human-subject protections. 

There is a lack of consistency and clarity about what is 
required to make post-market performance assessment 
of CDS tools possible as intended within the FDA’s 
pre-certification program. The above provisions of the 
HIPAA Privacy Rule are helpful, but they do not fully 
resolve problems developers face in gaining access to 
RWD for regulatory uses. The Privacy Rule’s provisions 
are all permissive in that they allow but do not require 
providers to share RWD. 
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Recommendations

Ensuring flows of RWD to support regulatory decision-
making ultimately may require separate state or federal 
legislation spelling out when healthcare providers can 
be required to share RWD with software developers to 
support appropriate regulatory oversight. Such legislation 
could, for example, take the form of future state healthcare 
facility licensure statutes requiring facilities that implement 
CDS tools to supply RWD to developers to help them 
detect any problems. To protect patients’ privacy, those 
same statutes could set limits on how developers can  

use the RWD, for example, by imposing privacy standards  
or limiting downstream re-disclosures of RWD once it is in 
the developer’s hands. 

State comprehensive privacy law requirements that are 
more stringent than the Privacy Rule are not federally 
preempted and still apply in addition to the Privacy 
Rule.54,55 These laws could address perceived weaknesses 
in HIPAA’s protections for RWD and bolster public trust 
in regulatory uses of RWD. Colorado56 and Virginia,57 
following California’s example, recently passed or signed 
legislation related to relevant privacy protections. 
However, they currently do not seem to impose additional 
restrictions on data or entities already subject to HIPAA  
and other federal privacy protections. 

Both FDA and state governments will need to take further 
action in order to make RWD a viable and trusted tool for 
regulatory decision-making. 

Use of RWD by the FDA 

FDA’s own uses of RWD are governed not by the HIPAA 
Privacy Rule but by the Privacy Act of 1974.53 The agency 
has a long history of handling sensitive data in the 
course of its regulatory decision-making and maintains 
a high level of public trust as a result. FDA, as part of 
the U.S. Department of Health and Human Services, 
is subject to the Common Rule in its own research 
uses of data, even though research by FDA-regulated 
private-sector entities often falls outside the Common 
Rule for reasons already discussed. To the extent FDA 
uses RWD in its own regulatory decision-making, these 
activities seemingly would be characterized – in the vast 
majority of cases – as public health surveillance or other 

public health practice activities that are not “research” 
that falls under the Common Rule. The recent revisions 
to the Common Rule make clear that  “public health 
surveillance activities, including the collection and testing 
of information or biospecimens, conducted, supported, 
requested, ordered, required, or authorized by a public 
health authority” are excluded from the definition of 
“research” that the Common Rule regulates.47

Ensuring flows of RWD to support 
regulatory decision-making ultimately  
may require separate state or federal 
legislation spelling out when healthcare 
providers can be required to share RWD 
with software developers to support 
appropriate regulatory oversight. 
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Data Sharing Methods

Beyond the aforementioned challenges with locating and 
obtaining complete and relevant data, as well as complying 
with applicable laws and ethics, the relevant parties 
involved in this work must also determine how to physically 
exchange data safely and securely. 

This step comes with its own difficulties. FDA finds 
cybersecurity to be essential9 in medical device software, 
so the data architecture underlying the algorithm must 
be secure. FDA also aims to “explore less reliance on 
solely manual collection of information and more focus 
on ways to use technology, such as automated remote 
access to digital data, to collect SaMD product information 
once it is on the market.”11 This is indeed a critical step 
toward streamlining data collection, but again requires 
very rigorous cybersecurity measures to ensure patients’ 
privacy is protected. Finally, in some instances of such 
data exchange, the inclusion of PHI or PII is required, 
or acceptable, increasing the need for more secure data 
platforms.

The sharing and use of data can be governed by the 
execution of data sharing or data use agreements (DSA/
DUAs). These agreements are legally enforceable contracts 
that clearly document what data are being shared and 
how the data can be used. HIPAA allows much data to be 
exchanged without DSA/DUAs, except for limited data sets. 
As discussed earlier, “limited data set” refers to a limited 
set of identifiable patient information as defined in the 
HIPAA Privacy Regulations. Because a “limited data set” is 
still considered PHI, the Privacy Regulations contemplate 
that the privacy of individuals will be protected by requiring 
covered entities to enter into DUAs with recipients of these 
data sets. 

While DSA/DUAs are not always required, their use should 
be encouraged as they can further protect the privacy 
of people whose data are used. For example, a DSA/
DUA could outline that data are allowed to be shared 
with software developers for the sole purpose of post-
market surveillance of their CDS tool (i.e., to improve their 
algorithm), but subject to restrictions on reuse of the data 
without patient authorization (whether by de-identifying  
the data or by waiving authorization for further uses). 

At a high level, the agreements should incorporate 
language that protects the entity providing the data, 
ensures that the data will not be misused, prevents 
miscommunication, and is enforceable. Specific concerns 
that the provider and receiving entity should address 
include the intended use and constraints on use of the 
data, data confidentiality and security, methods of data 
sharing, the period of the agreement, potential financial 
costs of data sharing, data destruction policy after use,  
and other relevant items related to the specifics of  
a project or its intended purpose. 

The Office of the National Coordinator for Health 
Information Technology (ONC) within the department 
of Health and Human Services has developed a trusted 
exchange framework (TEF) and common agreement (CA), 
together named TEFCA,58 to establish a universal floor  
of interoperability across the U.S. The CA establishes  
an infrastructure model and governing approach to 
securely share clinical information, while the TEF describes  
a common set of foundational principles for trust policies 
and practices to help facilitate information exchange. While 
this framework is generally intended for the exchange of 
health information between doctors, nurses, pharmacists, 
or other healthcare providers and patients as part of 
routine care, its concepts could be applied to facilitate the 
development of standardized agreements with “plug-and-
play” options depending on the context of use and data 
requirements. 

To further simplify data sharing, ONC has also released  
its draft version 3.0 of the United States Core Data  
for Interoperability (USCDI) standard.59 The USCDI 
sets a foundation for broader sharing of electronic 
health information to support patient care by providing 

Mechanisms for Safe Data Sharing and Use

Beyond the aforementioned challenges  
with locating and obtaining complete  
and relevant data, as well as complying  
with applicable laws and ethics, the relevant 
parties involved in this work must also 
determine how to physically exchange  
data safely and securely. 
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a standardized set of data elements for nationwide, 
interoperable health information exchange. The 
draft version 3.0 includes data elements for patient 
demographics, diagnoses, procedures, medications, 
laboratory tests, vital signs, diagnostic imaging, clinical 
notes, unique device identifiers and others. In addition 
to other common data standardization models, such as 
PCORnet, Sentinel, i2b2, and OMOP, the USCDI can be 
helpful in further standardizing and exchanging relevant 
RWD more efficiently. The NESTcc recently released an 
active surveillance roadmap outlining how the design, build, 
and current testing of a cloud environment for medical 
device post-market surveillance will incorporate many 
of the characteristics around data quality, data sharing, 
analytics, privacy, security, and interoperability across 
multiple participating health systems.60

Reusable DSA/DUAs, in combination with standardized 
data models,61 can be used for efficient post-market 
data collection for AI/ML-enabled CDS tool performance 
evaluations as well as for other purposes that require 
RWD. Public-private partnerships within the medical device 
space, including the medical device industry, research 
organizations, hospitals, clinicians, payers, patient groups 
and the CDRH at FDA, can play a key role in facilitating 
the development of such standardized agreements and 
physical mechanisms for secure data transfer.

Data Sharing Platforms and Security

The availability of cloud computing and storage has 
revolutionized how health data can be stored and 
analyzed. However, given the sensitivity of health data, 
the security of data exchange platforms, such as clouds, 
should be a top priority. This is particularly essential across 
systems for data linkage between multiple institutions 
or entities. Security is complicated and requires strict 
adherence to comprehensive frameworks, including 
implementation of frequent security updates to protect 
against new potential threats. There are multiple security 
compliance frameworks for certifying platforms for health 
data storage and exchange, such as ISO 27001, FISMA, the 
NIST cybersecurity framework, FedRAMP and others, most 
of them incorporating HIPAA-related controls. Depending 
on the specific use cases the platform needs to support, 
one or multiple of these compliance frameworks may 
need to be applied. 

Recommendations

Regulators and other stakeholders involved in the 
development of a future regulatory model for AI//ML-
enabled CDS tools should continue to consider how 
to implement cloud platforms for sharing RWD that 1) 
contain appropriate security controls, 2) are audited by 
third-party experts, and 3) comply with existing security 
compliance frameworks. These platforms should include 
standardized tools and modules that are HIPAA-compliant 

and are governed by re-usable DSAs/DUAs. Public-private 
partnerships that include stakeholders from across the 
medical device and healthcare ecosystem, such as NESTcc, 
are best positioned to facilitate this work and should pay 
attention to ongoing efforts within the field.
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Other regulatory jurisdictions are considering AI/ML 
software tools similar to those under development  
in the U.S. and are considering policies to mobilize RWD  
for oversight of such tools. 

Leveraging the experience obtained outside of the U.S. 
can be helpful in pre-market decisions and in the timely 
detection of potential safety issues during real-world use. 
FDA has used medical device clinical data from outside the 
U.S. (OUS) if the data meet certain standards.62 In a recent 
FDA publication including examples of RWE in support 
of regulatory applications, there were 22 submissions 
including OUS data.4 

However, additional challenges must be addressed in 
order to incorporate OUS RWD in the timely, iterative, and 
consistent post-market performance evaluation of CDS 
tools. It is important to realize that CDS tools “work” on 
data collected about patients, not on patients directly, unlike 
many other medical devices. For example, an MRI machine 
operates similarly regardless of its geographical location,  
but software tools can perform very differently if there  
are significant underlying differences in the ways their 
data inputs are interpreted and recorded between 
countries. These differences could be caused by potential 
differences in patient populations, healthcare delivery 
and quality, coverage and reimbursement of medical 

products, clinical data architectures and storage, and 
overall data standardization. 

Furthermore, the accessibility of relevant data from 
international settings may be problematic as well, due 
to applicable comprehensive privacy regulations (e.g., 
the General Data Protection Regulation [GDPR] in the 
European Union). Making efficient and secure international 
data sharing possible on the large scale that would be 
ideal for AI/ML-enabled CDS tools will require a deep 
understanding of the data and their characteristics across 
different geographic contexts and the ability to identify 
mechanisms for data exchange under internationally 
applicable privacy laws. 

As with other multi-stakeholder collaborations, this can 
best be achieved by international partnerships that include 
stakeholders from across the healthcare ecosystem (such as 
NESTcc, the international medical device regulators forum 
[IMDRF] and others). Notable examples are the Get-Real 
Institute in Europe, which facilitates the adoption and 
implementation of RWE in health-care decision-making,63 
and the addition of an international partner from the 
United Kingdom within NESTcc’s research network.64 It will 
be worthwhile to closely monitor the learnings from these 
collaborations on how to address issues with international 
data sharing.

Leveraging Experiences and Data from International Settings

Summary and Conclusions
FDA has shown interest in manufacturers using RWD/RWE for the post-market performance evaluation of SaMD, including 
for AI/ML-enabled CDS tools, because of their rapid product lifecycles and frequent updates. However, such post-market 
evaluation can be complicated as software tools should ideally be monitored for potential changes in performance over 
time (e.g., changes in clinical workflows, patient populations, standards of care, data entry and variability across sites) 
as well as for inappropriate or variable usage (e.g., monitoring clinical actions taken in response to the tool and the 
appropriateness of those actions). To achieve this, specific data elements that should be captured within RWD sources 
include algorithm inputs and outputs, “gold standard” comparators, patient outcomes, and details on whether the 
healthcare professional acted on the algorithm’s recommendations. However, these data may not always be available  
or be of high enough quality or may require complicated linkage between siloed data sources. In addition, patient privacy 
protections, such as those enacted by HIPAA, the Common Rule, state law, and FDA’s human subject protections, may 
complicate data accessibility depending on whether RWD/RWE will be used by private-sector device manufacturers and 
software developers or by the FDA itself. Finally, parties involved in data collection must also determine how to exchange 
data securely and how the sharing and use of data should be governed from a legal perspective. Ensuring the flow of RWD 
to support consistent, timely, and efficient post-market performance evaluation of CDS tools as envisioned under FDA’s 
pre-certification program and the 2021 AI/ML action plan ultimately will require the capture of appropriate and high-
quality data related to algorithm accuracy and variables that influence patient outcomes, separate legislation by federal 
and state legislators spelling out when healthcare providers can be required to share RWD with software developers,  
and outlining best practices for data sharing using secure software platforms governed by DSA/DUAs.
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