Translational Science in Drug Development: Surrogate Endpoints, Biomarkers, and More

Duke-Margolis Center for Health Policy | Virtual Meeting May 24-25, 2022

Welcome and Overview | Day 2

Mark McClellan

Director, Duke-Margolis Center for Health Policy

2

Statement of Independence

The Robert J. Margolis, MD, Center for Health Policy is part of Duke University, and as such it honors the tradition of academic independence on the part of its faculty and scholars. Neither Duke nor the Margolis Center take partisan positions, but the individual members are free to speak their minds and express their opinions regarding important issues.

For more details on relevant institutional policies, please refer to the Duke <u>Faculty</u> <u>Handbook</u>, including the <u>Code of Conduct</u> and other <u>policies and procedures</u>. In addition, regarding positions on legislation and advocacy, Duke University policies are available at <u>http://publicaffairs.duke.edu/government</u>.

Disclaimer

Funding for this workshop was made possible in part by a cooperative agreement from the U.S. Food and Drug Administration. The views expressed in written workshop materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services nor does mention of trade names, commercial practices, or organizations imply endorsements by the U.S. Government.

Meeting Agenda (Day 2)

12:00 pm Welcome and Overview

12:10 pm Session 3: Clinical Validation and Regulatory Acceptance of Biomarkers as Surrogate Endpoints

1:50 pm Break

2:05 pm Session 4: Beyond Surrogate Endpoints: Other Ways Translational Science Can Support Drug Development

3:30 pm Session 5: Opportunities and Challenges for Incorporation of Translational Science in Clinical Development Programs

4:15 pm Closing Remarks

4:25 pm Adjournment

Session 3: Clinical Validation and Regulatory Acceptance of Biomarkers as Surrogate Endpoints 12:10 pm – 1:50 pm EST

Steve Ryder

Chief Medical Officer

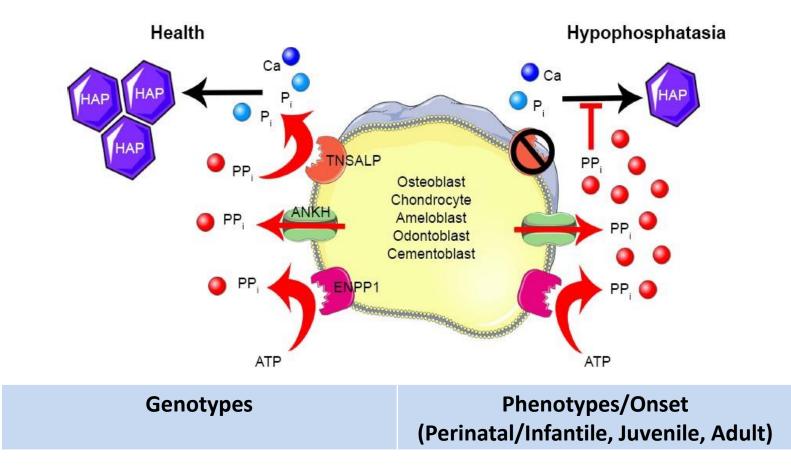
Rallybio Inc.

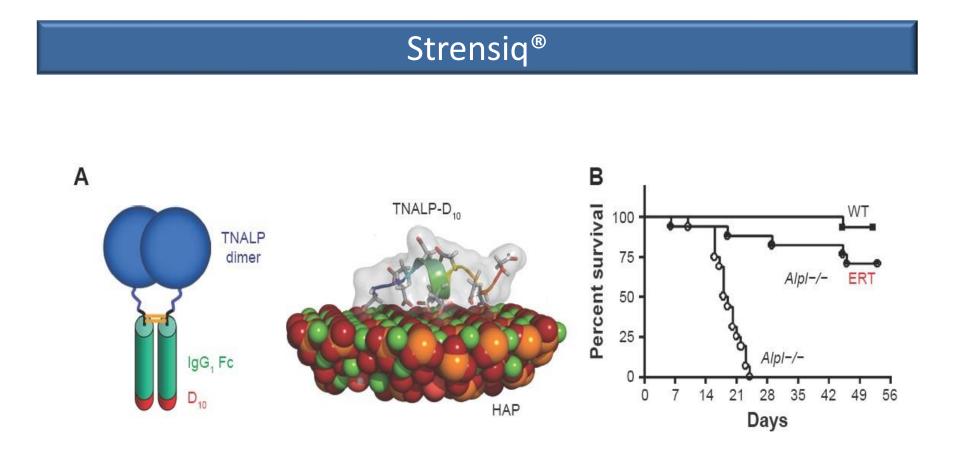
Translational Science in Drug Development: Surrogate Endpoints, Biomarkers, and More May 24th and 25th 2022 Session 3: Clinical Validation and Regulatory Acceptance of Biomarkers as Surrogate Endpoints

Use of Imported Clinical Assessment Tools in Rare Disease: A Case Study

Steve Ryder Chief Medical Officer Rallybio

Contributors: David Thompson, Tino Melian, Kenji Fujita and Colleagues


Disclosure


I am a full-time employee and hold an equity interest in Rallybio At the time the presented work was done, I and all contributors were full-time employees of and held equity interests in Alexion Pharmaceuticals

Overview

- Rare/ultra-rare diseases are generally poorly understood and poorly researched
- This extends to both the preclinical and clinical areas
- Almost always there is no precedent for designing studies in the treatment of rare/ultra-rare disease. Irreversible disease morbidity/mortality may constrain design and analytical approaches
- Assessment tools are often unavailable and almost never validated in the rare/ultra-rare disease under study
- One approach to improve the availability of assessment tools is to thoroughly review assessment tools in alternative disease areas with relevant morbidity/functional disability and pre-apply them to natural history cohorts
- This importation and logical application of assessment tools was successfully used in the development of asfotase alfa (Strensiq[®]) in the treatment of patients with juvenile-onset hypophosphatasia (HPP)

Hypophosphatasia (HPP)

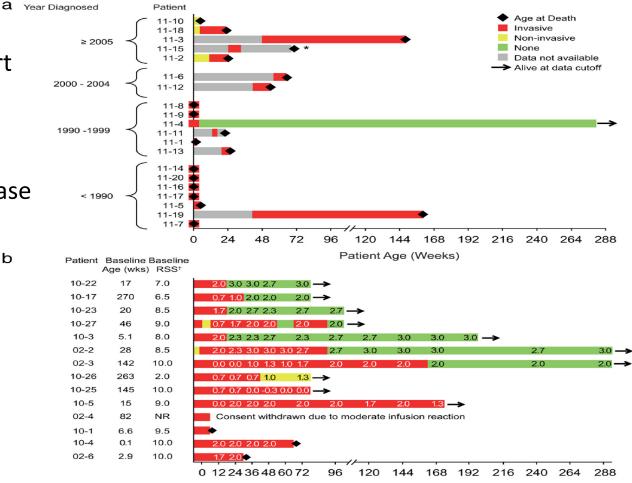
Strensiq[®] (asfotase alfa) [hypophosphatasia; HPP]

Biology	Pathology	Clinic	QoL / Survival
TNSALP TNSALP TNSALP Substrates (PPi, PLP)	Skeletal System Bone Mineralization (Bone Biopsy; DEXA) Rickets Severity (RGI-C; RSS)	Physical Function Ambulation (6MWT) Development Milestones (BSID-III; BOT-2)	Survival/ Respiratory Status Activities of Daily Living/Pain (CHAQ; PODCI; LEFS; BPI-SF)
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Growth	Strength (HDD)	

6MWT = 6 minute walk test; BOT 2 = Bruininks-Oseretsky Test of Motor Proficiency BPI SF = Brief Pain Inventory-Short Form; BSID III = Bayley Scales of Infant and Toddler Development; CHAQ = Child Health Assessment Questionnaire; DEXA = dual energy x ray absorptiometry; HHD = hand-held dynamometry; LEFS = Lower Extremity Functional Scale; PODCI = Pediatric Outcomes Data Collection Instrument; PLP = pyridoxal 5¹² phosphate; PPi = inorganic pyrophosphate; RGI C = Radiographic Global Impression of Change; RSS = rickets severity scale

Strensiq[®] (asfotase alfa) [hypophosphatasia; HPP]

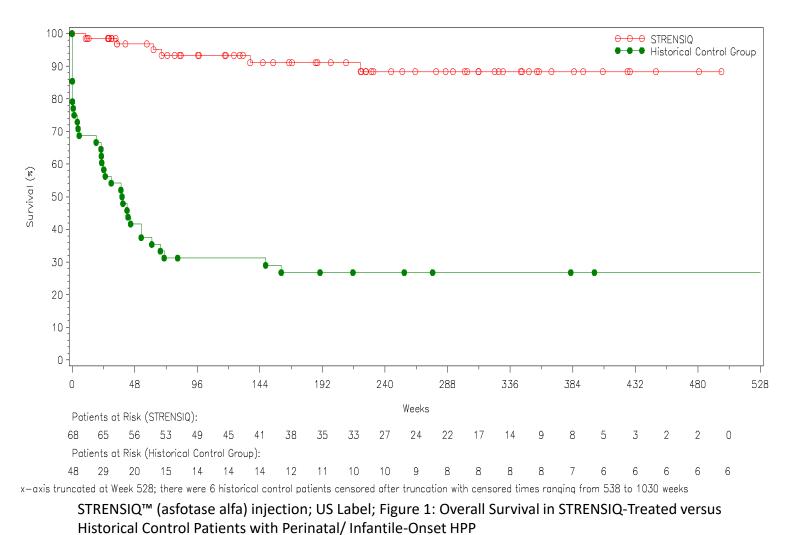
Perinatal/Infantile-onset

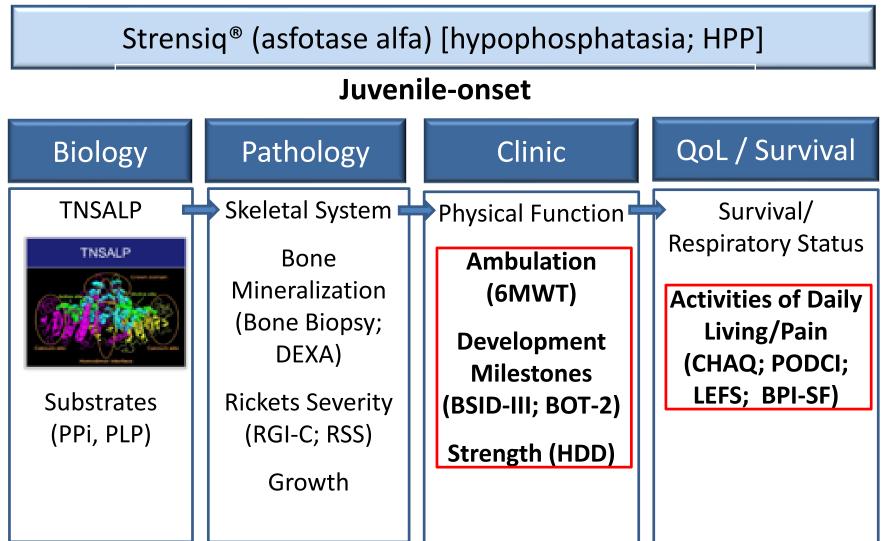

TNSALP Skeletal System Physical Function Survival/ TNSALP Bone Ambulation	Biology	Pathology	Clinic	QoL / Survival
(Bone Biopsy; DEXA) Development (CHAQ; PODCI	TNSALP TNSALP Substrates	Bone Mineralization (Bone Biopsy; DEXA) Rickets Severity (RGI-C; RSS)	Ambulation (6MWT) Development Milestones (BSID-III; BOT-2)	Respiratory Status Activities of Daily

6MWT = 6 minute walk test; BOT 2 = Bruininks-Oseretsky Test of Motor Proficiency BPI SF = Brief Pain Inventory-Short Form; BSID III = Bayley Scales of Infant and Toddler Development; CHAQ = Child Health Assessment Questionnaire; DEXA = dual energy x ray absorptiometry; HHD = hand-held dynamometry; LEFS = Lower Extremity Functional Scale; PODCI = Pediatric Outcomes Data Collection Instrument; PLP = pyridoxal 5¹/₂ phosphate; PPi = inorganic pyrophosphate; RGI C = Radiographic Global Impression of Change; RSS = rickets severity scale

QoL/Survival

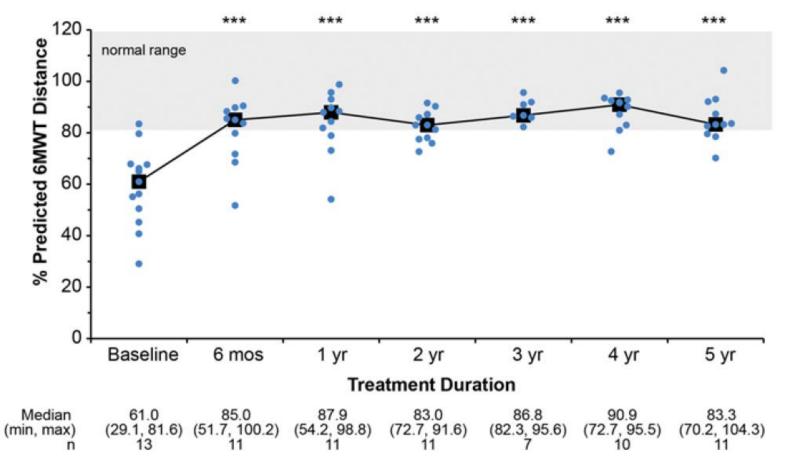
Perinatal/Infantile-onset

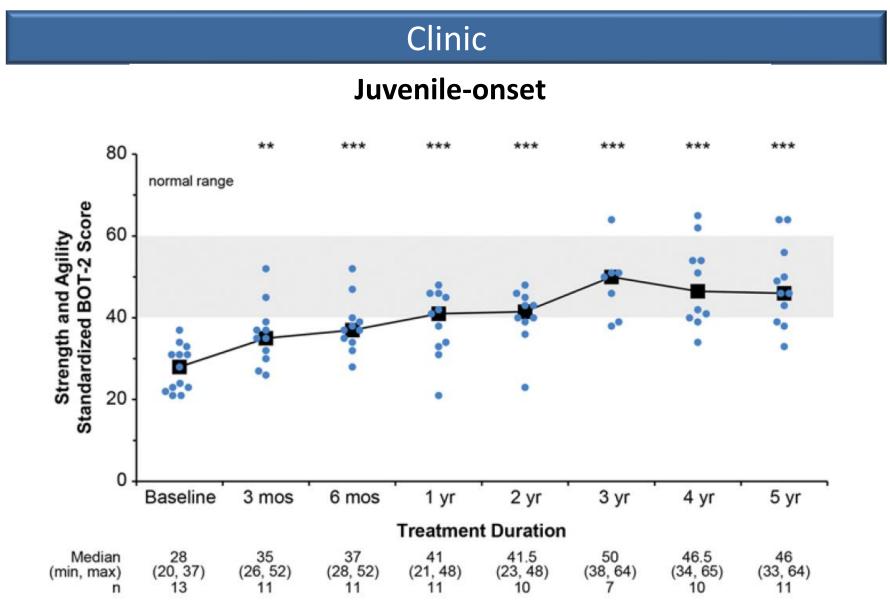

Ventilatory Support and Patient Outcomes: 20 Historical Control (top) and 14 Asfotase Alfa–Treated (bottom) Patients ь


٠

QoL/Survival

Perinatal/Infantile-onset


5/22/2022

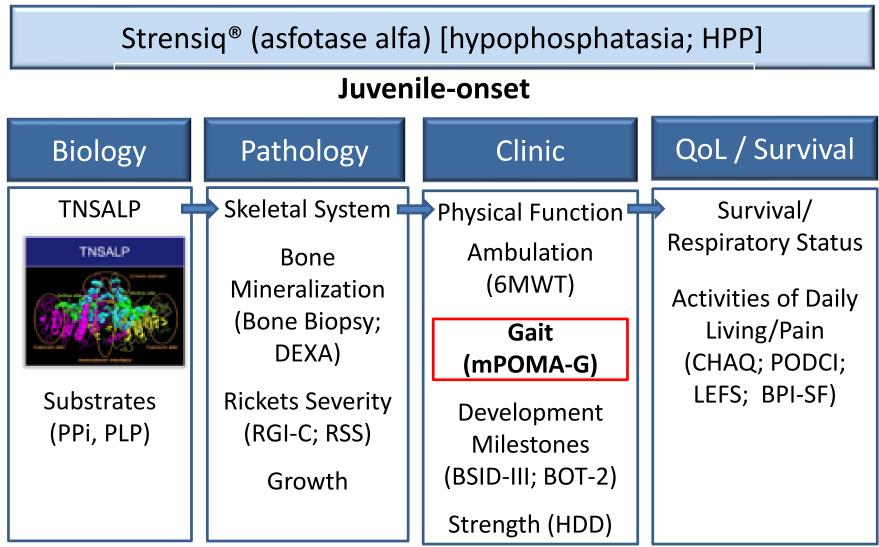

6MWT = 6 minute walk test; BOT 2 = Bruininks-Oseretsky Test of Motor Proficiency BPI SF = Brief Pain Inventory-Short Form; BSID III = Bayley Scales of Infant and Toddler Development; CHAQ = Child Health Assessment Questionnaire; DEXA = dual energy x ray absorptiometry; HHD = hand-held dynamometry; LEFS = Lower Extremity Functional Scale; PODCI = Pediatric Outcomes Data Collection Instrument; PLP = pyridoxal 51 phosphate; PPi = inorganic pyrophosphate; RGI C = Radiographic Global Impression of Change; RSS = rickets severity scale

Clinic

Juvenile-onset

Whyte et al. JCI Insight. 2016

Clinic


Juvenile-onset

BOT2: Shuttle Run

5/22/2022

Ryder: 5th Annual CPSP Lake Nona Leadership Council and Scientific Symposium (2016)

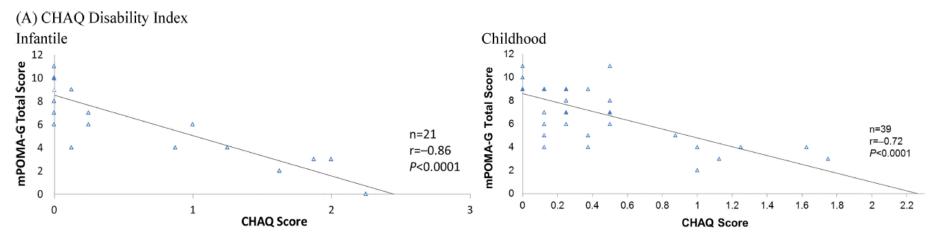
6MWT = 6 minute walk test; BOT 2 = Bruininks-Oseretsky Test of Motor Proficiency BPI SF = Brief Pain Inventory-Short Form; BSID III = Bayley Scales of Infant and Toddler Development; CHAQ = Child Health Assessment Questionnaire; DEXA = dual energy x ray absorptiometry; HHD = hand-held dynamometry; LEFS = Lower Extremity Functional Scale; PODCI = Pediatric Outcomes Data Collection Instrument; PLP = pyridoxal 5¹ phosphate; PPi = inorganic pyrophosphate; RGI C = Radiographic Global Impression of Change; RSS = rickets severity scale

Performance-Oriented Assessment of Mobility Problems in Elderly Patients Mary E. Tinetti, MD

Clinic

Juvenile-onset

Development and validation of a modified performance-oriented mobility assessment tool for assessing mobility in children with hypophosphatasia


Dawn Phillips^{a,1,*}, Donna Griffin^b, Tracy Przybylski^b, Erica Morrison^b, Amy L. Reeves^b, Marc Vallee^e, Kenji P. Fujita^d and Katherine L. Madson^{b,1} *Division of Physical Therapy, University of North Carolina, Chapel Hill, NC, USA Shriners Hospitals for Children, St. Louis, MO, USA Biostatistics, Alexion Pharmaceuticals, Inc., Boston, MA, USA dClinical Development, Alexion Pharmaceuticals, Inc., Boston, MA, USA*

mPOMA-G Review and Adaptation

- An expert panel of physicians, physical therapists, and statisticians evaluated the suitability of the POMAG for assessing gait in children with HPP using observational, non-instrumented video footage
- Most POMA-G components were relevant and could be used
- Several modifications were recommended to adapt it for use in children with HPP resulting in the modified POMA-G (mPOMA-G)
- Modifications included:
 - (1) removing the rating of initiation of gait;
 - (2) expanding the assessment of step length and step continuity;
 - (3) removing the rating of path;
 - (4) adding new items within observations for step length and height;
 - (5) clarifying descriptions of specific items to increase sensitivity and consistency among raters; and
 - (6) Creating a scoring key that provides detailed instructions and illustrations

mPOMA-G Validation

- Concurrent validation of mPOMA-G scores was made to other outcome measures assessing functional impairments
- Pearson correlation coefficients demonstrated strong concurrent validity between mPOMA-G scores and
 - Childhood Health Assessment Questionnaire (CHAQ) Disability Index,
 - Pediatric Outcomes Data Collection Instrument (PODCI), and
 - 6-Minute Walk Test.

mPOMA-G Application

- Conducted in accordance with GCP and after IRB review and approval. Parents or legal guardians of the patients provided written informed consent and patients provided written assent. Visible faces in videos were permanently blurred, and all videos (n = 64) were assigned a new masking code and randomized before each scoring
- 3 trained physical therapists applied the mPOMAG to score videos of 14 children with HPP while walking.
- Patients (age range: 5–15 years) were enrolled in an open-label asfotase alfa clinical study (NCT00952484) with extension (NCT01203826) or a natural history study (NCT02235493)
- Videos of children in the treated group (n = 8) were taken before and after treatment; videos of children in the natural history group (n =6) were taken at routine follow-up visits

Ryder: Use of Imported Clinical Assessment Tools in Rare Disease: A Case Study **mPOMA-G Application**

The median (range) rate of change per year was 2.51/year (0.0, 4.6) in asfotase alfa-treated patients compared with 0.33/year (0.0, 0.9) for untreated historical controls (p=0.0303, Wilcoxon rank-sum test)

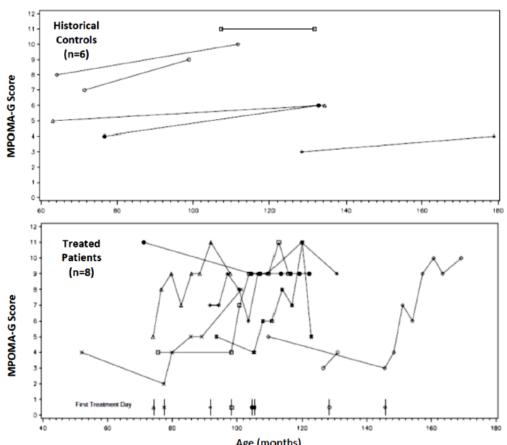


Figure 7: MPOMA-G Results for Historical Controls vs. Treated Patients

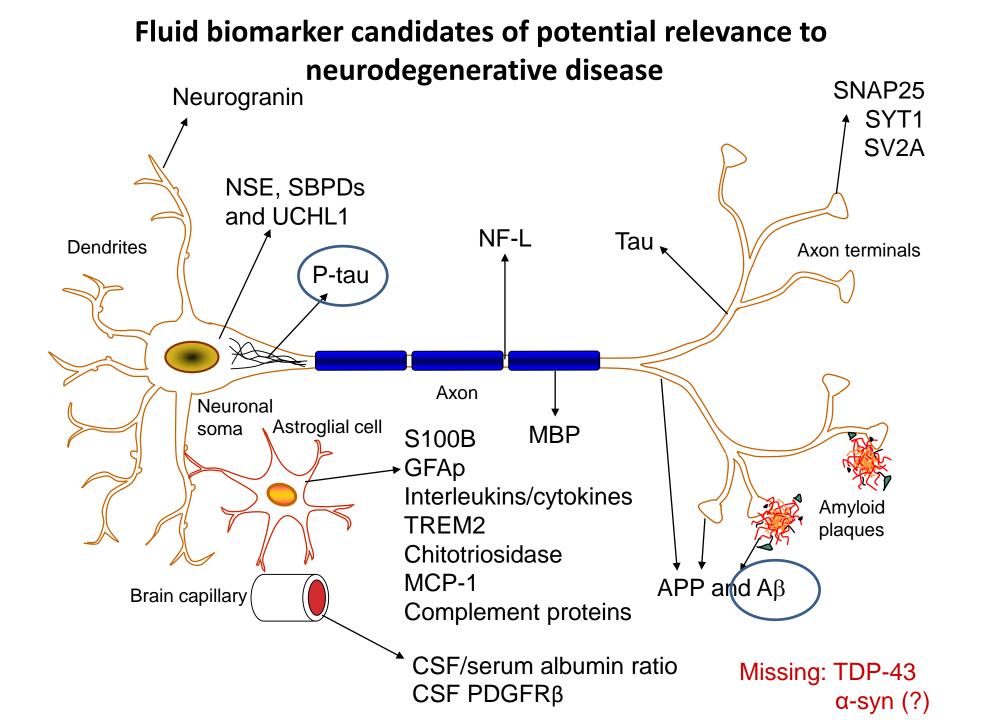
Forward Recommendation

- In the development of rare/ultra-rare disease, build in a forward review of assessment tools in alternative disease areas with relevant morbidity/functional disability
- Consider its application in the development program and review/modify the clinimetric characteristics when applied to the specific disease under study
- Conduct rater training and assessment tool validation using established scales
- Apply to relevant natural history and study drug datasets

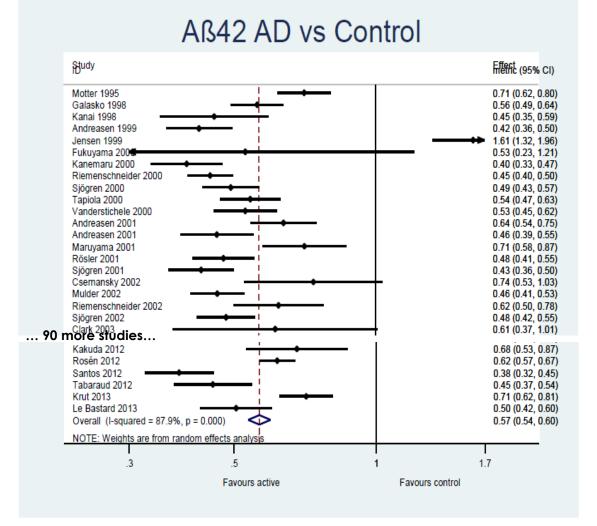
Henrik Zetterberg

Professor of Neurochemistry

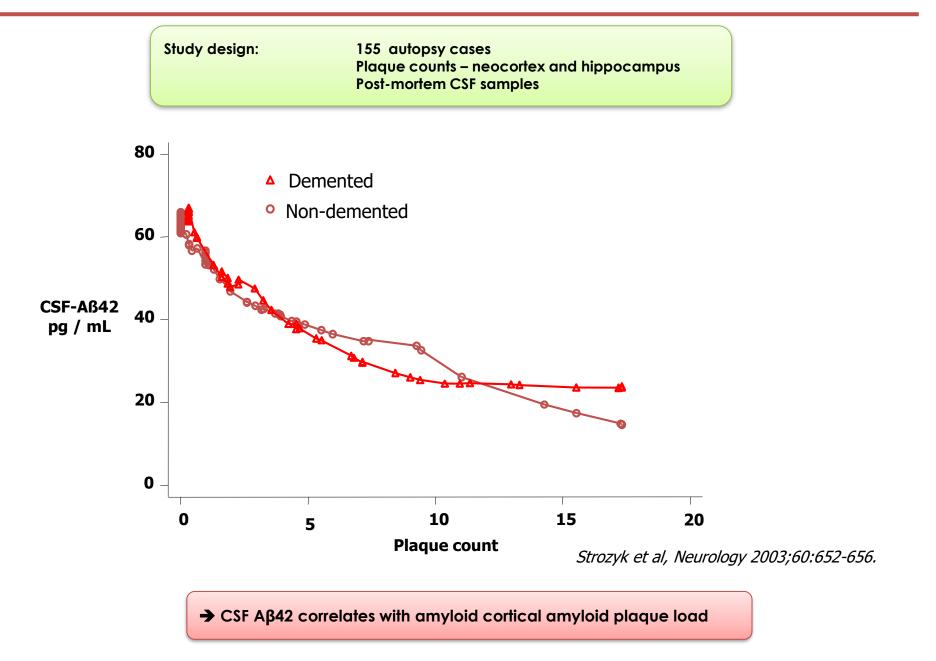
University of Gothenburg and University College London



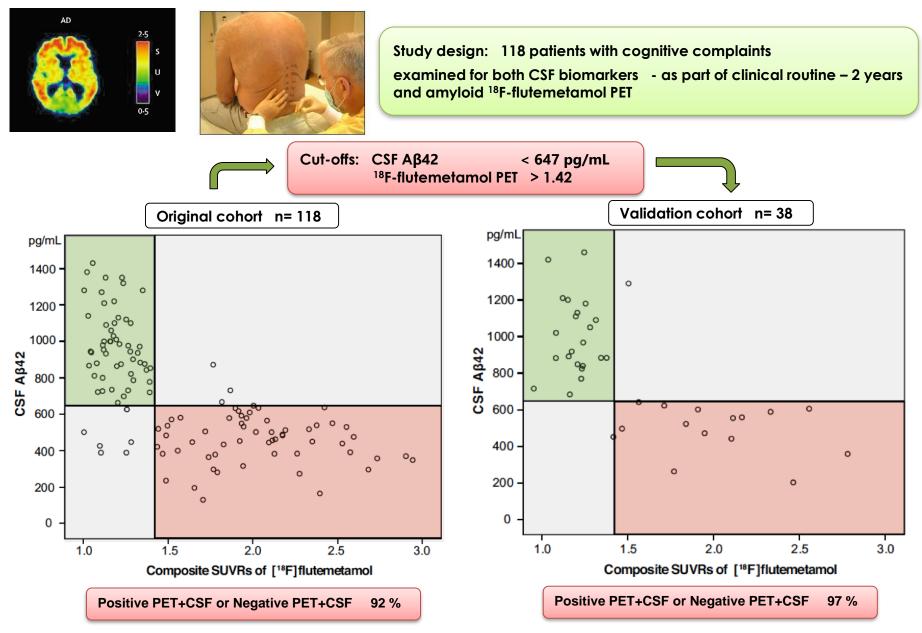
Development and validation of cerebrospinal fluid and blood biomarkers for neurodegenerative diseases


Henrik Zetterberg, MD, PhD Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden; Institute of Neurology and UK Dementia Research Institute, UCL, UK

A = amyloid pathology

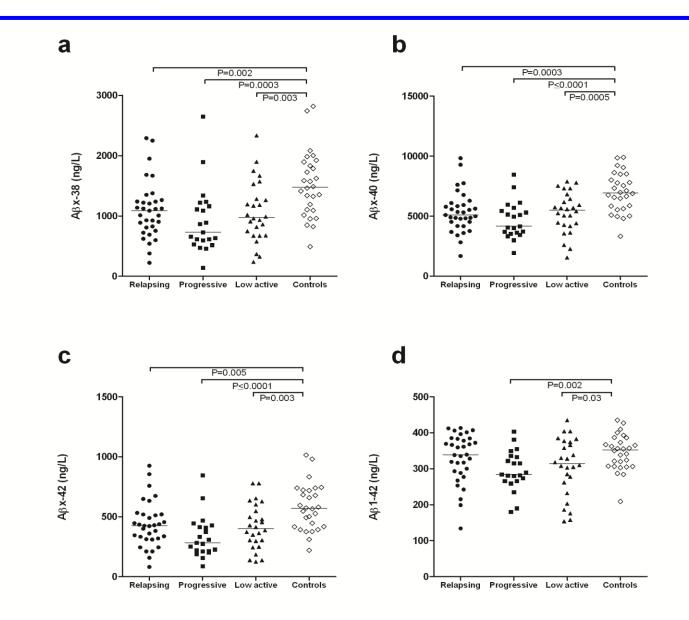


CSF A β 42 is decreased in AD



AlzBiomarker Database

CSF A_{β42} is a marker of amyloid plaque pathology



CSF A β 42 concentration correlates with amyloid PET

Palmquist S, et al, JAMA Neurol 2014

CSF Aβ42 concentration may be decreased in neuroinflammatory conditions

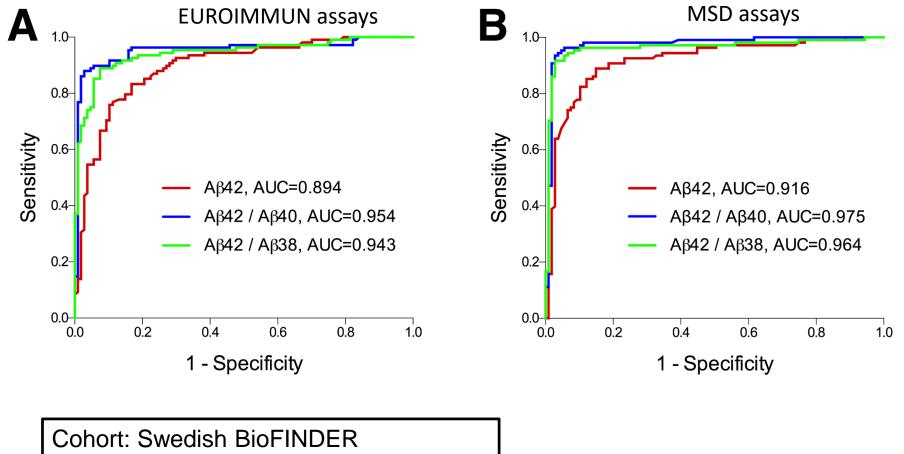
Augutis et al., Multiple Sclerosis 2013

CSF Aβ42 concentration may be decreased in normal pressure hydrocephalus

ſ	Table 2	LCSF biomarkers in patients with iNPH and HI ^a						
		iNPH (n = 28)	HI (n = 20)	iNPH/HI ratio				
	NFL	1,260 (840-2,290) ↑	825 (653-1,243)	1.53 ^b				
	MBP	1.5 (1.1-1.9) ↔	1.3 (1.0-1.5)	1.12 NS				
	Αβ38	637 (438-894) ↓	1,641 (1,231-2,173)	0.39°				
	Αβ40	5,067 (3,634-6,573) ↓	10,083 (7,626-12,794)	0.50°				
	Αβ42	221 (156-325) ↓	498 (391-669)	0.44 ^c				
	sAPPα	505 (338-739) ↓	1,110 (727-1,244)	0.46 ^c				
	sAPPβ	176 (110-258) ↓	414 (250-545)	0.43 ^c				
	t-tau	39 (34-50) ↓	84 (64-107)	0.47 ^c				
	p-tau	39 (33-50) ↓	59 (47-75)	0.67 ^d				
	IL-8	34 (26-38) ↔	31 (26-40)	1.10 NS				
	IL-10	0.66 (0-0.9) ↔	0.67 (0-0.8)	0.99 NS				
	MCP1	746 (602-874) ↑	628 (564-686)	1.19 ^b				
	Albumin CS	F 287 (188-408) ↔	232 (203-280)	1.24 NS				
	Albumin rat	io 6.8 (5.0-10) ↔	5.6 (4.5-6.4)	1.22 NS				

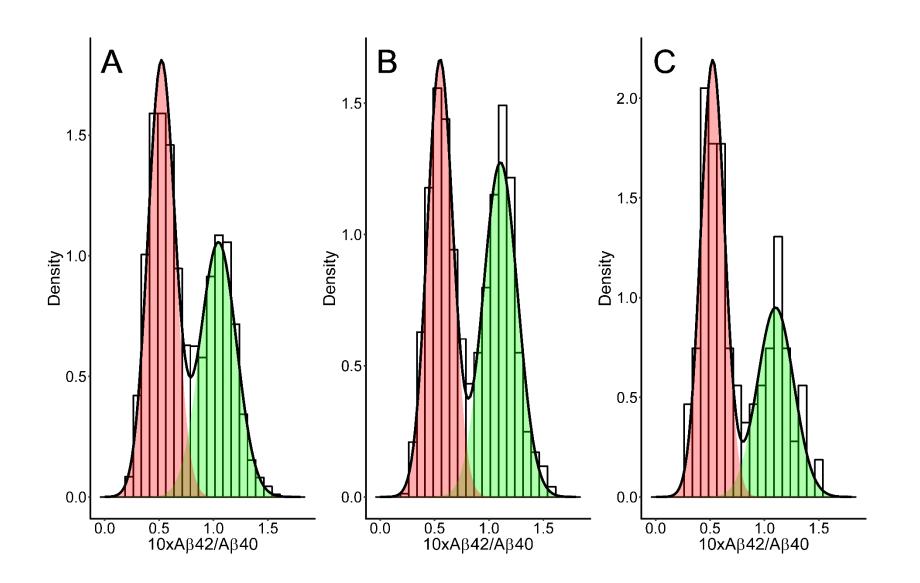
Abbreviations: $A\beta$ = amyloid β ; HI = healthy elderly individuals; IL = interleukin; iNPH = idiopathic normal-pressure hydrocephalus; LCSF = lumbar CSF; MBP = myelin basic protein; MCP1 = monocyte chemoattractant protein 1; NFL = neuro-filament light protein; NS = nonsignificant; p-tau = phosphorylated tau; sAPP = soluble amyloid precursor protein; t-tau = total tau.

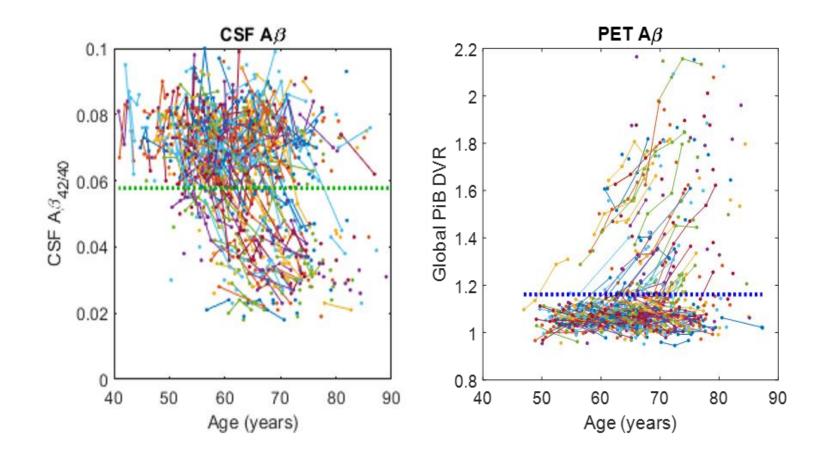
^a Arrows indicate levels in iNPH in comparison with HI. Values are given as median (Q1-Q3 range).

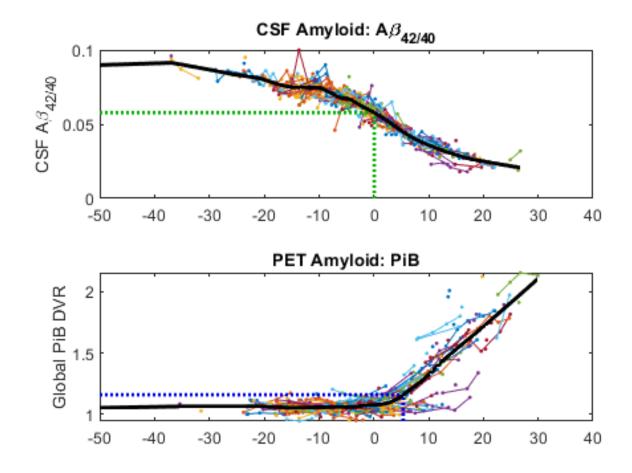

- $^{b}p \leq 0.05.$
- $^{c}p \leq 0.001.$
- $^{d}p \leq 0.01.$

Jeppsson et al., Neurology 2013

...and there may be constitutively low A β producers who are close to the A β 42 cutpoint for positivity

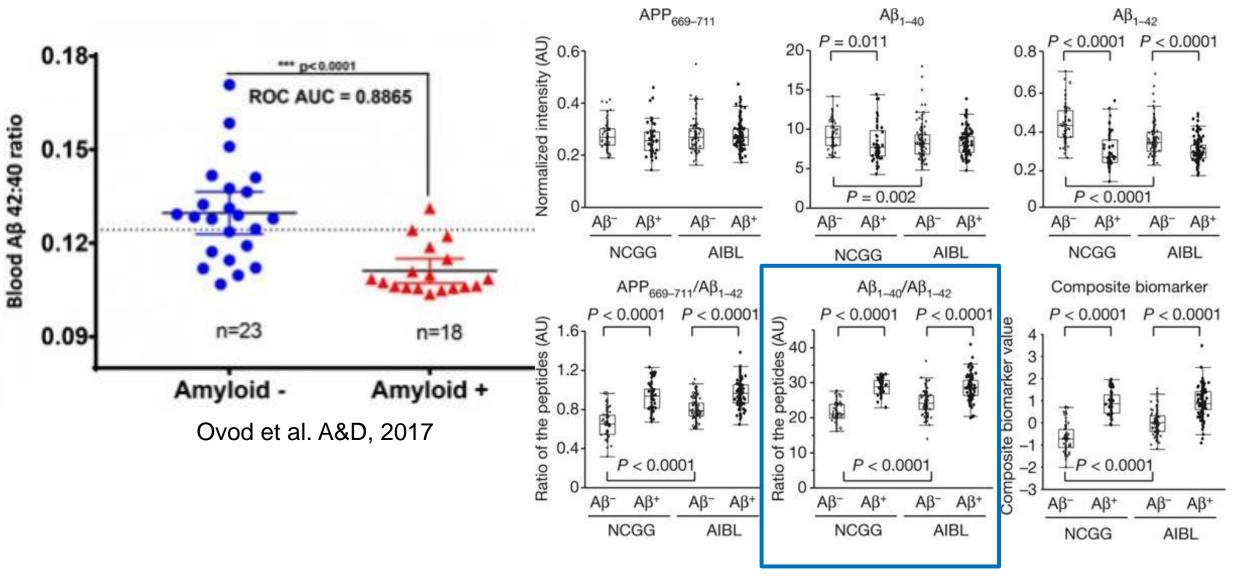

The CSF A β 42/A β 40 ratio corrects for this


CSF A β 42/40 (or A β 38) and PET A β


215 SCD/MCI (108 PET⁺ and 107 PET-) PET: flutemetamol

Janelidze *et al.,* Ann Clin Transl Neurol. 2016

Betthauser T et al., AAIC 2021 Neuroimaging: Multimodal Biomarkers July 27, 2021

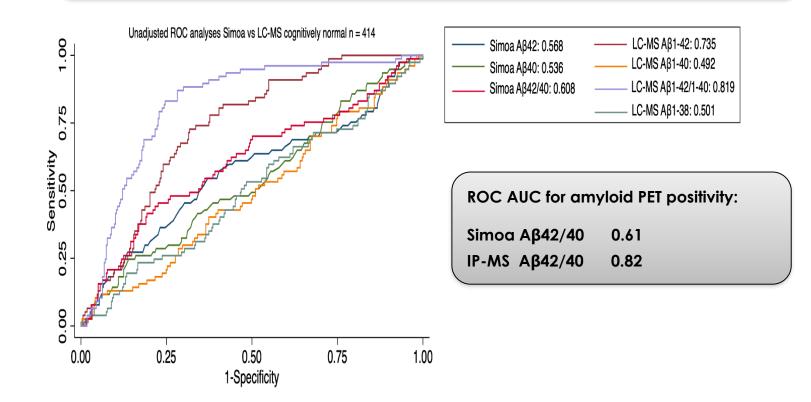


Betthauser T et al., AAIC 2021 Neuroimaging: Multimodal Biomarkers July 27, 2021

How about plasma $A\beta$?

Study		Ef	ffect Si	ze (95 % CI)		AD	CTRL Effect Size Lower CI Upper CI	% Weight			
	0.2	0.4	0.6	1 2	5						
Mayeux, 1999				•		64	105	1.600	1.553	1.648	5.19
Arvanitakis, 2002						220	59	1.085	0.800	1.471	2.63
Fukumoto, 2003						146	92	1.057	0.911	1.227	4.23
Mayeux, 2003						79	365	1.168	1.061	1.287	4.76
Fagan, 2007						33	65	1.139	0.779	1.665	2.06
Fagan, 2007						16	65	1.000	0.580	1.723	1.26
Giedraitis, 2007						39	18	0.850	0.479	1.509	1.16
Pesaresi, 2007			-	-		192	126	0.765	0.665	0.879	4.33
Schupf, 2008						104	1021	0.994	0.986	1.002	5.23
Xu, 2008			_	•		113	155	0.848	0.632	1.139	2.72
Fagan, 2009						29	69	0.625	0.344	1.135	1.09
Roher, 2009						17	21	1.202	0.903	1.601	2.79
Sedaghat, 2009				•		29	16	1.313	1.219	1.415	4.95
Lui, 2010				•		186	724	0.926	0.878	0.977	5.08
Sundelöf, 2010						101	28	1.295	1.091	1.538	3.99
Head, 2011			٠	_		17	12	0.645	0.604	0.689	5.01
Chiu, 2013				—		30	107	1.841	1.328	2.552	2.45
Chiu, 2013				•		31	107	1.217	1.175	1.261	5.17
Ruiz, 2013				•		51	53	0.831	0.607	1.136	2.56
Yamamoto, 2013						23	13	1.012	0.531	1.927	0.96
Zhang, 2013				•		153	120	0.865	0.811	0.922	5.02
Bu, 2014						128	135	1.228	1.079	1.399	4.44
Rembach, 2014				6		125	577	1.013	0.953	1.077	5.04
Wang, 2014						97	122	0.991	0.979	1.003	5.23
Jiao, 2015				— —		156	129	1.387	1.168	1.648	3.98
Kim, 2015				•		100	46	0.865	0.759	0.986	4.43
Janelidze, 2016			•	_		57	274	0.673	0.581	0.780	4.25
All Studies p=0.38718				¢		2336	4452	1.031	0.962	1.106	100

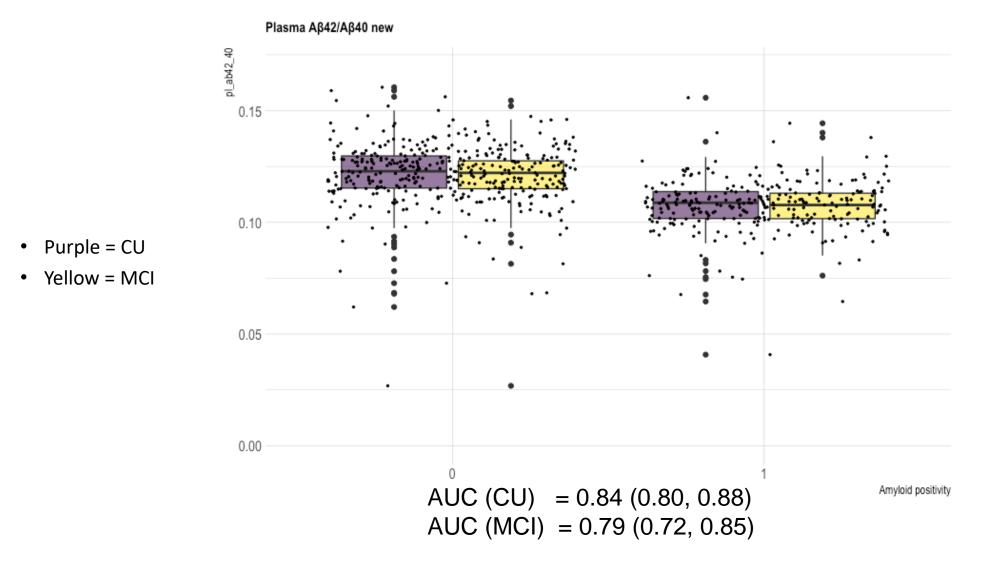
Highly sensitive and precise mass spec methods work


Nakamura et al., Nature, 2018

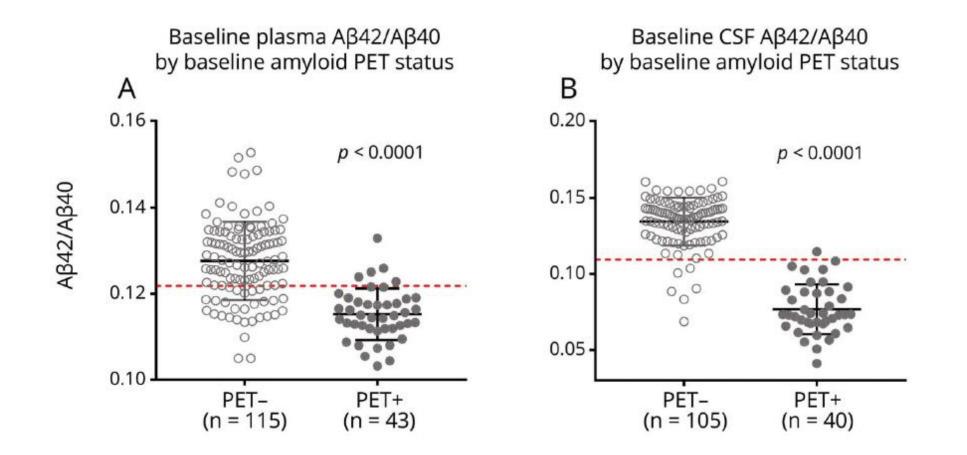
Plasma AB in the Insight46 cohort

Study design: Insight46 - epidemiological study people born 1946 (n= 414 cognitively unimpaired)

APOE genotype, neuropsych testing, amyloid PET

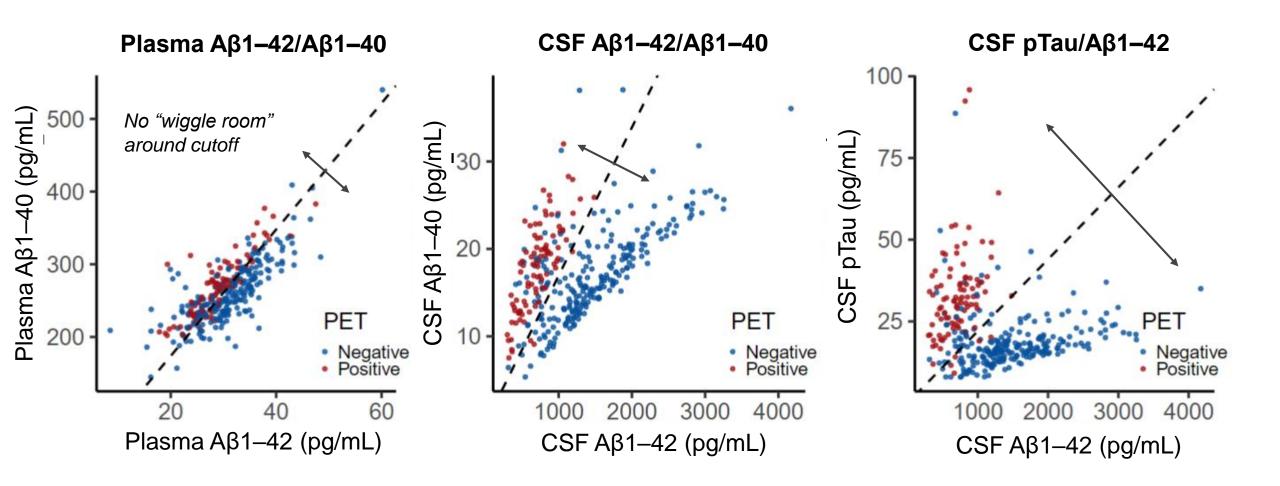

Plasma A β 42, A β 42/40 using immunoassay (Simoa) and IP LC-MS/MS

 \rightarrow Plasma A β 42 and A β 40/42 ratio by IP-MS/MS show high concordance with brain amyloidosis


Keshavan A et al., Brain 2021

Plasma AB42/AB40 ratio using a fully automated Cobas assay

Palmqvist et al., unpublished


The challenge

The fold reduction in CSF Aβ ratio is much greater than in plasma because of peripheral Aβ

Schindler et al., Neurology, 2019

The challenge, continued...

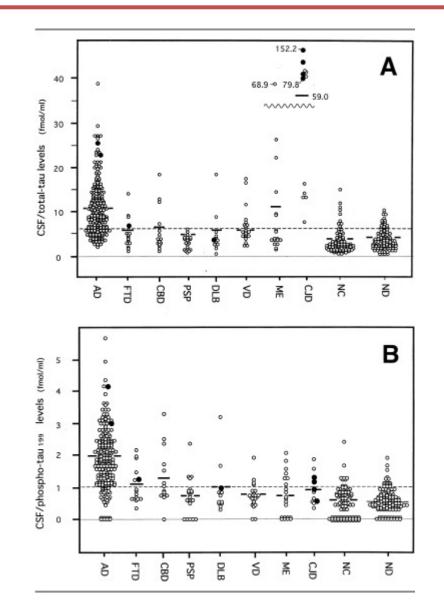
Rabe C et al., under review

Group level enrichment/screening: Yes

Individual diagnostics: No, or maybe, but with great caution

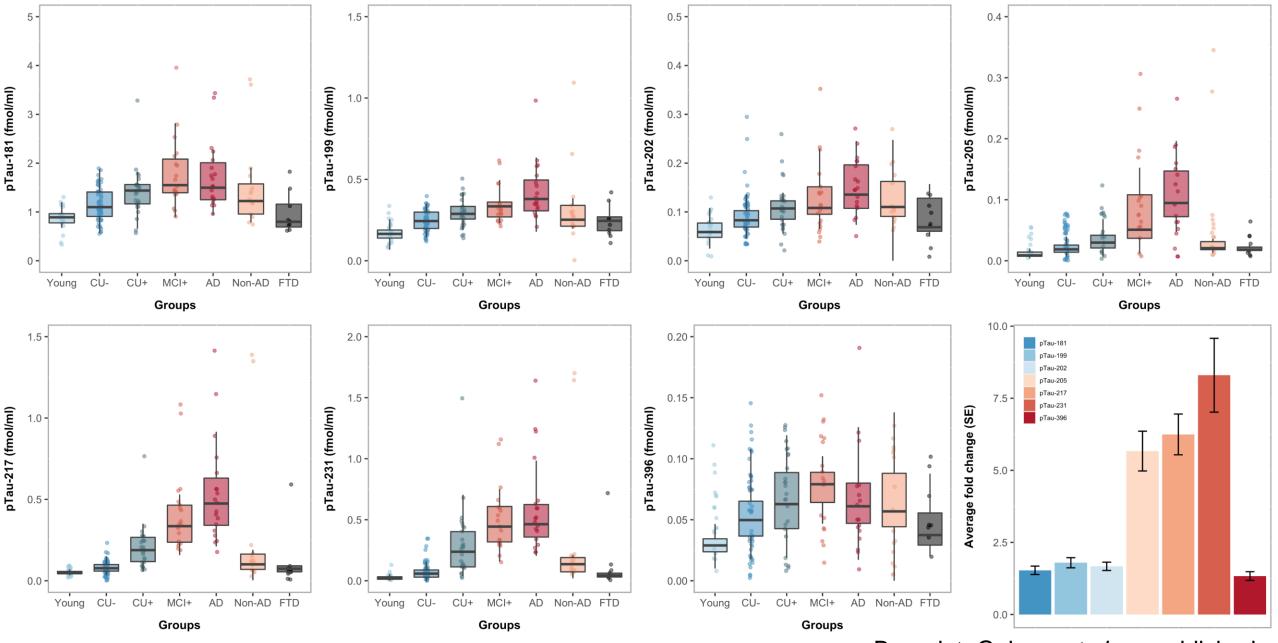
T = tau pathology

Alves, 2010		20	30	1./45	1.380	2.197
Craig-Schapiro, 2010	_ 	29	198	1.400	1.157	1.694
Craig-Schapiro, 2010		65	198	1.545	1.342	1.779
Exalto, 2010		58	91	1.809	1.580	2.070
Hertze, 2010		94	38	1.742	1.410	2.152
Landgren, 2010		801	286	1.311	1.254	1.370
Mulder, 2010	•	17	12	2.047	1.864	2.247
Riepe, 2010		106	30	1.446	1.189	1.760
Sluimer, 2010		47	23	1.422	1.116	1.811
Spies, 2010		69	47	2.265	1.960	2.618
Sundelöf, 2010		101	28	1.654	1.391	1.967
Thorsell, 2010		10	11	2.489	1.701	3.644
Verwey, 2010		60	40	2.045	1.784	2.346
Bibl, 2011		25	20	2.073	1.679	2.558
Bjerke, 2011		30	30	1.598	1.276	2.000
Johansson, 2011		18	20	1.687	1.389	2.048
Rami, 2011		18	19	1.606	1.171	2.204
Shi, 2011		50	137	1.949	1.661	2.287
Tarawneh, 2011		98	211	1.667	1.495	1.858
Arlt, 2012		51	98	1.774	1.529	2.058
Bartos, 2012		25	25	2.054	1.614	2.614
Hall, 2012		48	107	1.852	1.647	2.082
Malnar, 2012		13	11	2.056	1.244	3.400
Rosén, 2012		72	65	1.778	1.528	2.068
Santos, 2012		14	12	3.025	2.491	3.673
Tarawneh, 2012		60 23	211 21	1.648 2.042	1.619 1.541	1.678 2.706
Abraham, 2013 Hu, 2013		25	13	1.865	1.266	2.746
Kaerst, 2013		47	21	2.242	1.200	2.903
Kandimalla, 2013		23	23	2.505	2.149	2.903
Kramberger, 2013		117	231	1.960	1.742	2.205
Krut, 2013		21	43	2.366	1.841	3.040
Li, 2013		21	23	1.716	1.377	2.139
Luo, 2013		61	40	1.549	1.371	1.750
Molinuevo, 2013		98	47	1.959	1.618	2.372
Molinuevo, 2013		47	12	1.919	1.632	2.255
Molinuevo, 2013		34	44	1.770	1.427	2.195
Olsson, 2013		96	65	1.683	1.406	2.015
Alcolea, 2014		59	24	2.073	1.806	2.379
Arodin, 2014		18	16	2.103	1.674	2.641
Arodin, 2014		22	16	1.476	1.194	1.825
Deuschle, 2014		10	10	1.410	0.973	2.043
Duits, 2014	•	631	251	1.712	1.601	1.829
Hanzel, 2014		32	31	1.925	1.591	2.327
Hertze, 2014		92	72	4.194	3.511	5.008
Kester, 2014		547	337	1.894	1.779	2.016
Kristofikova, 2014		35	15	2.029	1.533	2.685
Li, 2014	— <u>—</u> —	21	22	1.716	1.371	2.149
Lodeiro, 2014	•	23	19	1.709	1.623	1.798
Monge-Argilés, 2014		30	28	2.113	1.787	2.499
Schmidt, 2014		32	32	2.334	1.888	2.885
Slaets, 2014		124	29	1.549	1.308	1.835
Wagshal, 2015		37	37	1.536	1.242	1.900
All Studies	\$	7498	5126	1.882	1.794	1.974
p<0.0001						
0.2 0.4 0.	6 1 2 5					

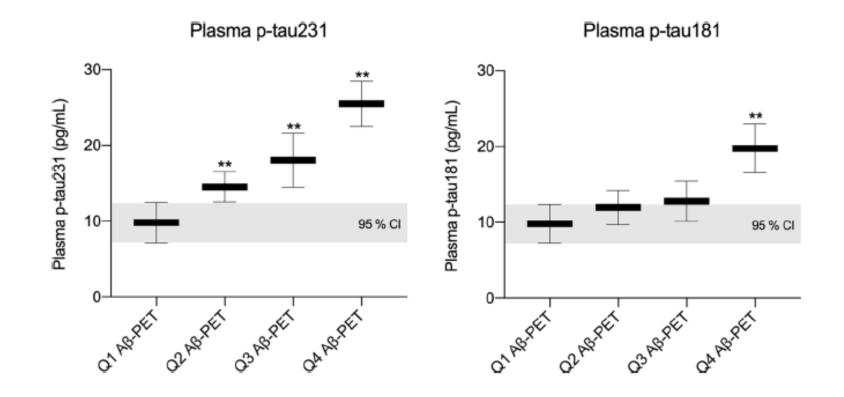

CSF P-tau is increased in AD

0.99 1.07 1.16 1.17 1.03 1.27 1.23 1.06 0.97 1.15 1.10 0.71

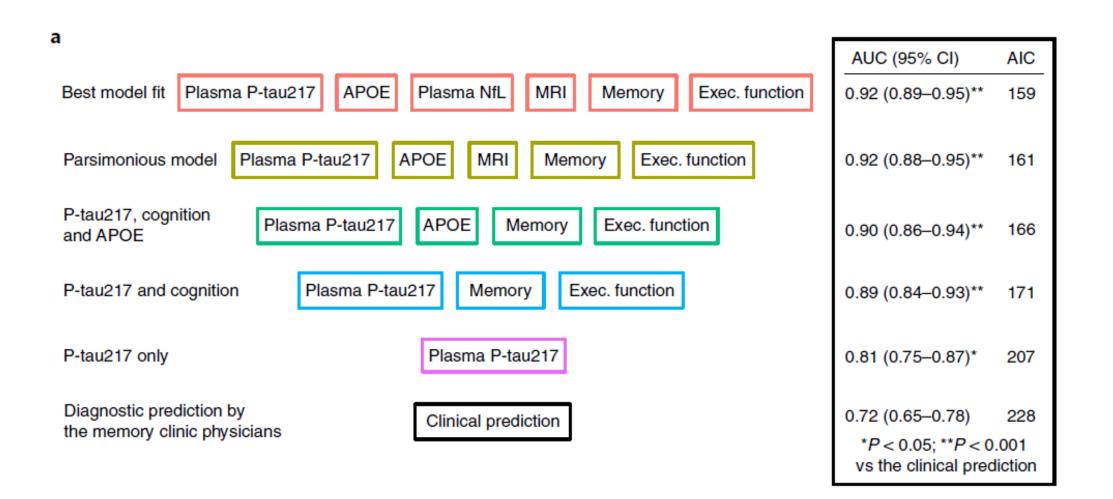
1.16 1.03


1.00 1.06 0.82 1.13 1.21 1.15 0.97 1.20 0.53 1.14 1.06 1.28 0.89 0.70 0.94 1.14 1.19 0.95 1.01 1.19 1.07 1.12 1.02 1.09 1.16 1.00 1.03 0.73 1.26 1.07 1.09 1.26 0.89 1.00 1.27 1.11 1.03 1.11 1.03 100

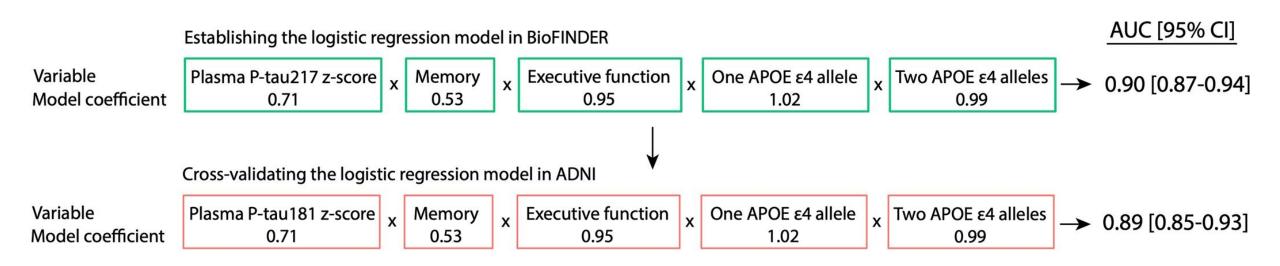
AlzBiomarker Database


CSF P-tau increase only in AD, not in (most) other neurodegenerative diseases

Differential detection of AD measuring different phospho-forms of tau in CSF

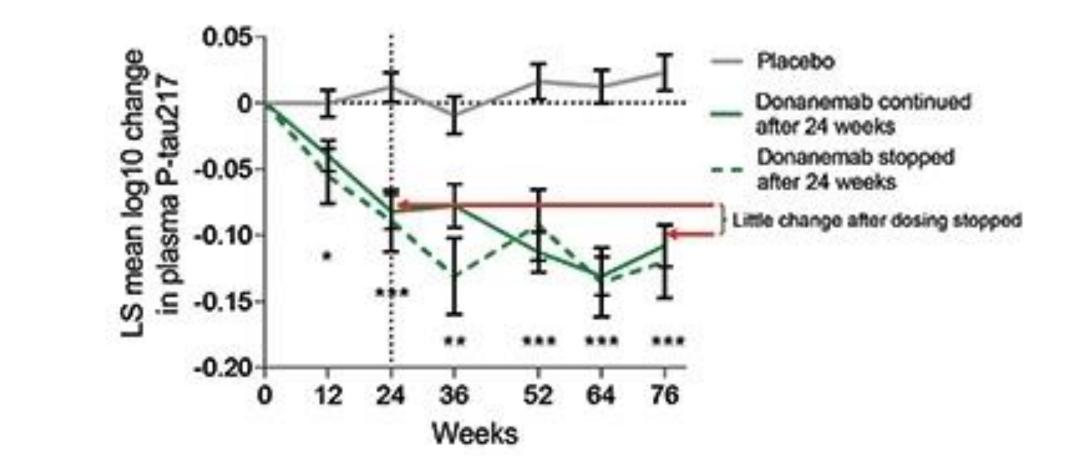

Benedet, Gobom et al., unpublished

Different phospho-forms of tau can be measured in plasma


Ashton et al., Acta Neuropathol. 2021

Plasma tests as clinical tools to predict AD-type dementia in patients with subjective or mild cognitive impairment

Palmqvist et al., Nature Med. 2021


Establishing a cross-validated model

http://predictAD.app

Palmqvist et al., Nature Med. 2021

Donanemab lowers plasma P-tau217

Eli Lilly, unpublished

	Aducanumab ^a	Placebo	P Value
EMERGE (NCT02484547)	-13%	+8%	P<0.001
ENGAGE (NCT02477800)	-16%	+9%	P<0.001

Hansson O et al., unpublished

Group level enrichment/screening: Yes

Individual diagnostics: Yes, at least we are getting there

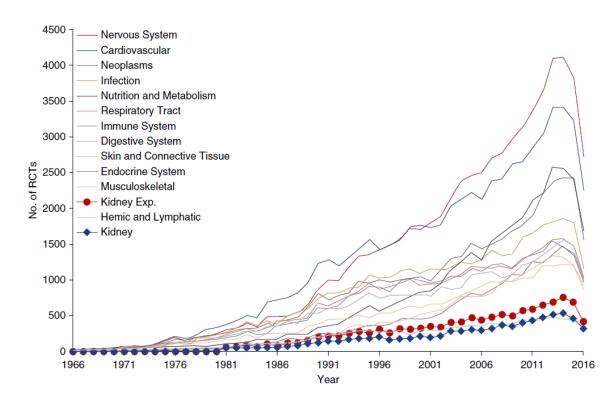
Thanks!! <u>henrik.zetterberg@gu.se</u> <u>h.zetterberg@ucl.ac.uk</u>

Professor of Medicine

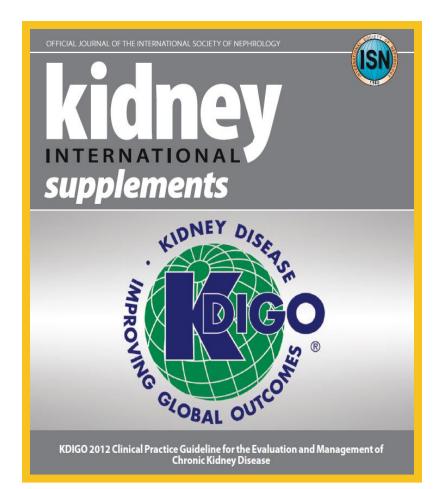
Tufts University School of Medicine

EP Chronic Kidney Disease Epidemiology Collaboration

GFR Decline as a Surrogate Endpoint for Progression of CKD


Clinical Validation and Regulatory Acceptance of Biomarkers as Surrogate Endpoint Translational Science in Drug Development: Surrogate Endpoints, Biomarkers, and More May 25 2022

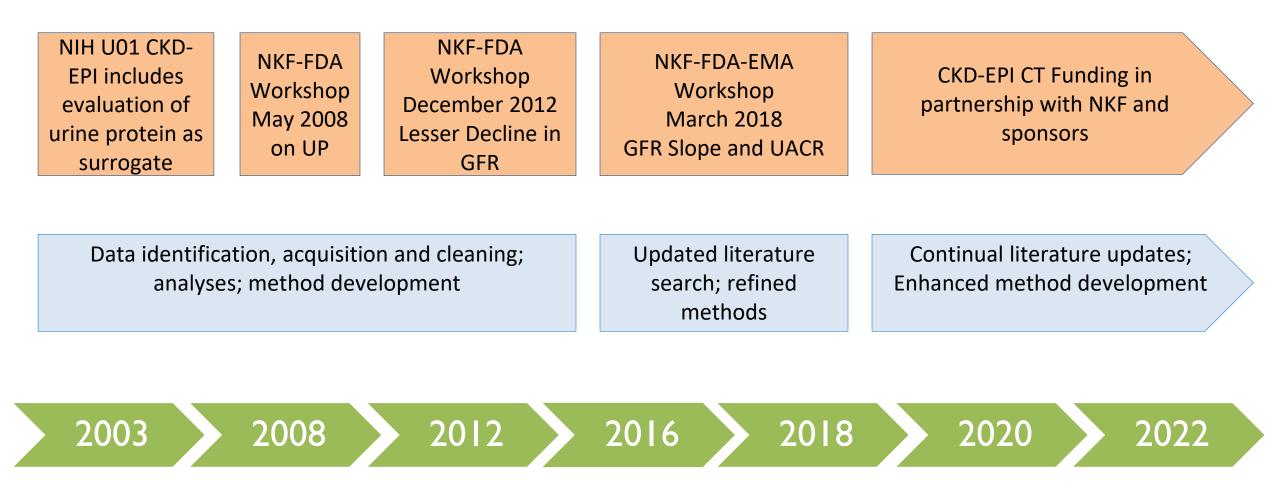
Lesley A Inker MD, MS Co-Director, Chronic Kidney Disease-Epidemiology Collaboration Tufts Medical Center &Tufts University School of Medicine, Boston MA


Background

- Kidney disease is slowly progressive
- Clinical trials to evaluate treatments to prevent or slow the progression to kidney failure require long duration of follow-up, leading to expensive and complex trials, or highly selected subset of participants
- Doubting of serum creatinine (57% decline in GFR) is accepted by regulators but still occurs late in disease course
- These challenges have likely contributed to the paucity of therapies to treat CKD

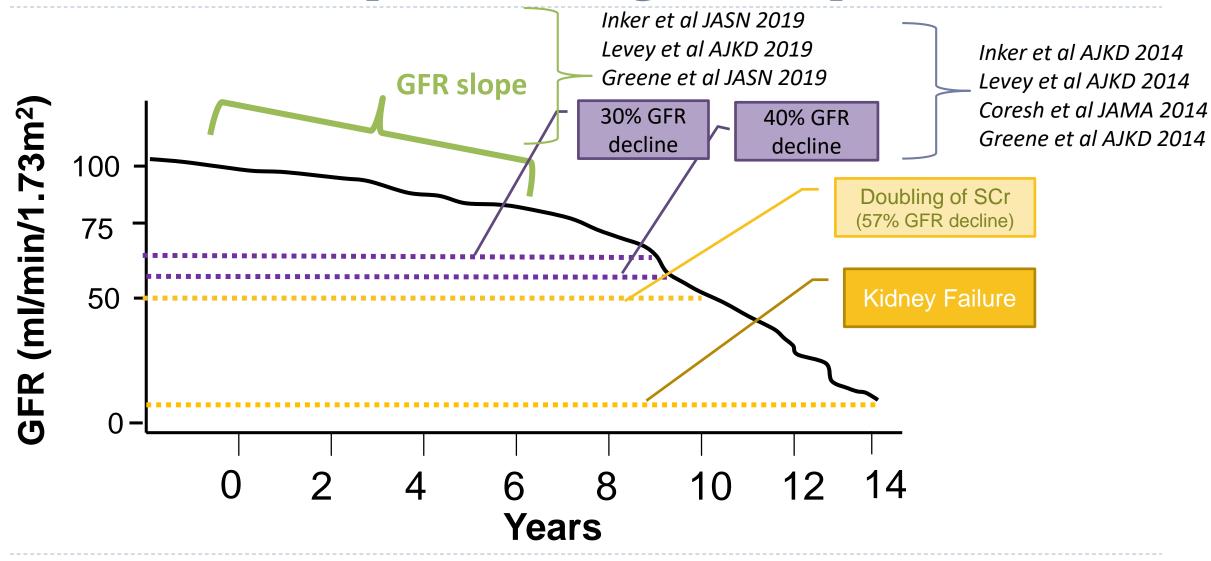
Number of RCT in kidney related domains comparedto other medical fieldsKriakos et al JASN 2019.

GFR slope and albuminuria are the two central biomarkers in CKD



Prognosis of CKD by GFR and albuminuria category

			Persistent albuminuria categories Description and range					
P	roano	sis of CKD by GFR	A1	A2	A3			
	d Albu	iminuria Categories: (DIGO 2012	Normal to mildly increased	Moderately increased	Severely increased			
			<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol			
m²)	G1	Normal or high	≥90					
י/ 1.73 ange	G2	Mildly decreased	60-89					
categories (ml/min/ 1.73 m ²) Description and range	G3a	Mildly to moderately decreased	45-59					
ories (ription	G3b	Moderately to severely decreased	30-44					
categ	G4	Severely decreased	15-29					
GFR	G5	Kidney failure	<15					


Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

CKD-EPI Investigations of Surrogate Endpoints for Trials in CKD Progression

UP, urine protein; GFR, glomerular filtration rate; UACR urine albumin to creatinine ratio; NKF, National Kidney Foundation

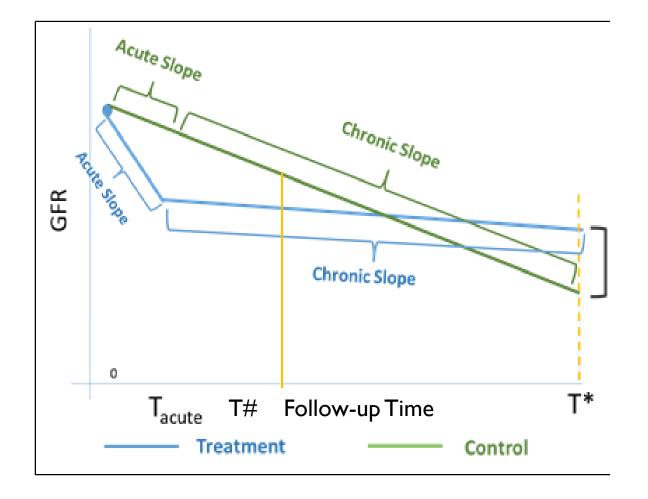
Use of GFR slope as surrogate endpoint

Use of GFR slope as surrogate endpoint

Advantages

Regardless of cause

- Decreased GFR defines CKD
- Level of GFR indicates severity
- GFR decline is the definition of progression, for all causes
- Compared to time to event
 - Increased power


67

- Includes fast and slow progressors
- Includes patients who have GFR decline that might lead to endpoint even after the end of the trial

Limitations/complications

- eGFR can reflect GFR as well as non GFR determinants
- Nonlinearity
- Heterogeneity
- Informative censoring
- Acute effects

Challenge of acute effects in GFR slope

GFR= N X SNGFR

Control arm Declining N (number of nephrons) Stable SNGFR (single-nephron GFR)

Treatment arm short-term - ↓ SNGFR, no change in N long-term - stable SNGFR, slower decline in N

T, Time SNGFR, single nephron GFR

Chaudhari and Inker, Current Opinion in Nephrology 2020

Models for computation of GFR Slope

- Goal: Provide a set of models that accommodate the range of circumstances expected in trials of CKD progression
- Linearity: In general, reasonable assumption that moderate deviations from linearity in the chronic phase do not effect overall slope estimates in trials that are relatively short in duration
- 2-slope model to allow for acute treatment effect on GFR that differs from chronic slope

Vonesh E, Tighiouart H, Ying J et al Mixed-effects models for slope-based endpoints in clinical trials of chronic kidney disease. Stats in Medicine 2019

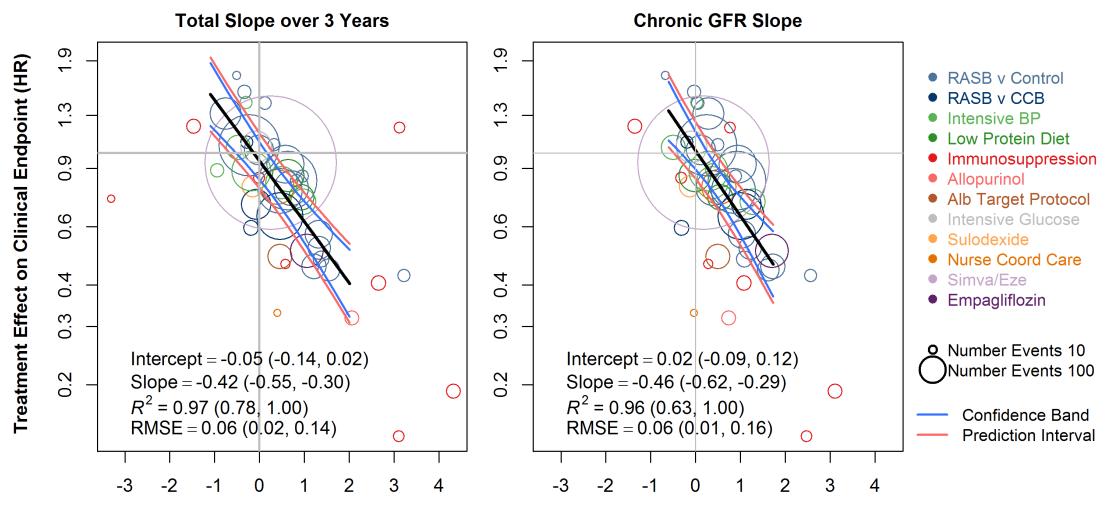
GFR slope model parameters

Informative censoring: For studies with > 15 ESRD/Death events, used shared parameter models with Weibull survival times

Heterogeneity

- Between subject: Random slopes and intercepts
- Within subject: Power of the means model to allow greater variability at higher GFR
- Treatment effect: Allowed different slope variance in each group to accommodate non-uniform treatment effects

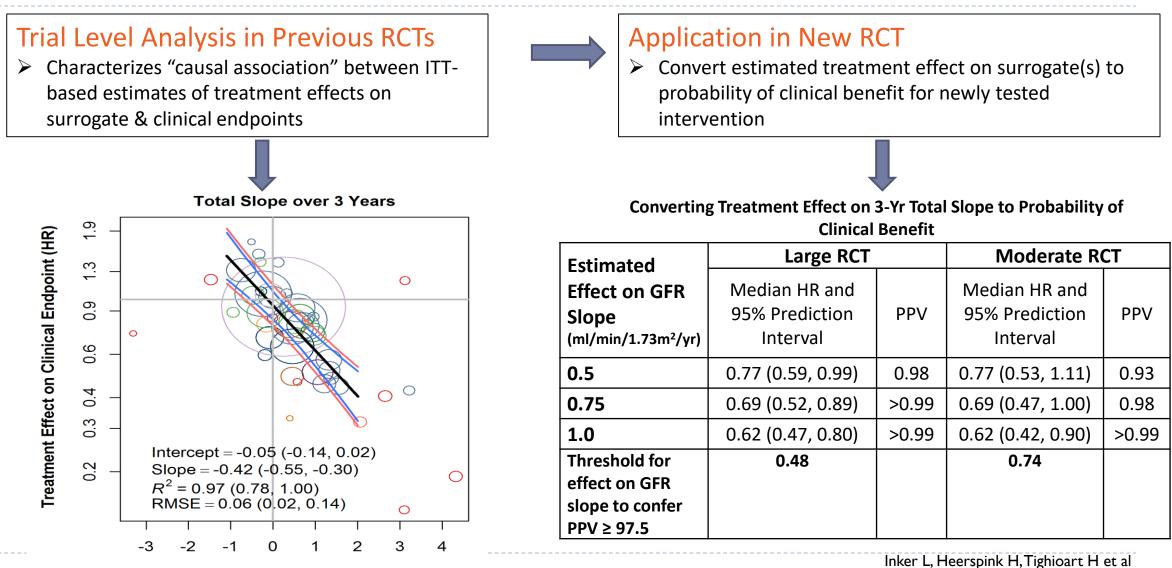
Model Selection


Automated algorithm used to select first the most complicated model (shared parameter and all of heterogeneity components), followed by models that did not have one or more of the parameters

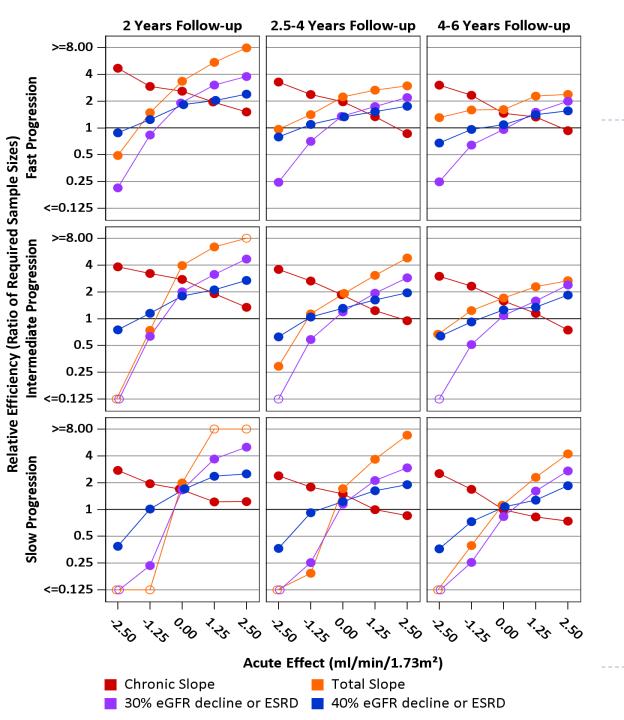
> Vonesh E, Tighiouart H,Ying J et al Mixed-effects models for slope-based endpoints in clinical trials of chronic kidney disease. Stats in Medicine 2019

Trial Level Analyses: evaluate the association between treatment effects on GFR slope to that of the clinical endpoint across range of RCT's

- Individual patient meta-regression
 - Consistent definitions
 - Correlation between errors in the estimated treatment effects
- Within study analyses:
 - Estimated treatment effects on GFR slope: GFRslopeTreatment GFR SlopeControl
 - Estimated treatment effects on the clinical endpoints Cox models, expressed as HR
- Bayesian meta-regression to obtain
 - Estimate of regression line as summarized by slope, intercept, RMSE and R²
 - Prediction intervals for HR on the clinical endpoints for future trial over a range of the treatment effect on the mean difference in GFR slopes


Trial-level analyses for the association of treatment effects on 3 year-total slope and chronic slope vs treatment effects on the clinical endpoint

Treatment Effect on GFR Slope (Mean Difference)


Inker L, Heerspink H, Tighioart H et al GFR Slope as a Surrogate End Point for CKD Progression JASN 2019

Applying Trial Level Analyses to a New RCT

Treatment Effect on Slope (ml/min/1.73m²/yr)

GFR Slope as a Surrogate End Point for CKD Progression JASN 2019

- Use of total slope instead of the clinical endpoint allows reduction in follow-up from 4-6 years to 2 years while improving efficiency by 17% to 64% (~sample size savings of 14% to 39%)
- Relative gains in power for slope analysis increase when baseline GFR is higher.
- Acute effect is critical consideration in selection of total vs chronic slope vs endpoint

Greene, Ying et al JASN 2019

Next steps/current work

 Update set of studies to account for well powered studies across more interventions

- Methods work on
 - Acute effects
 - Subgroups/interactions
- Joint models to combine slope with albuminuria as can be used in Phase Il studies with shorter follow-up

Summary

- Empirical data supports use of GFR decline as surrogate endpoints in RCTs evaluating therapies in CKD
- When applying these data to the design of a future trial, the most appropriate endpoint for the new trial needs to be considered in the context of the trial phase, specific population, treatment, and design.

EPI Chronic Kidney Disease Epidemiology Collaboration

National Kidney Foundation®

Andy Levey, Tom Greene and Josef Coresh

March 2018 CKD-EPI, CKD-PC, EMA, FDA and NKF Teams

CKD-EPI CT Analytical Team

Co Directors: Tom Greene, Hiddo Heerspink Tufts: Juhi Chaudhari Hocine Tighiouart Jonathan Miao Utah: Ben Haaland, Jian Ying, Willem Hardie Chicago: Ed Vonesh Groningen: Neils Jong

Nicole Gormley

Acting Division Director Division of Hematologic Malignancies

US Food and Drug Administration

USE OF SURROGATE ENDPOINTS IN ONCOLOGY

DUKE MARGOLIS WORKSHOP MAY 25, 2022

Nicole Gormley, MD Division Director Division of Hematologic Malignancies II U.S. Food and Drug Administration

Outline

- Regulatory Considerations for Biomarker Development
- pCR Example
- MRD in Multiple Myeloma
- Future Directions

Potential uses of Biomarkers

- Prognostic Biomarker
- Clinical Uses
 - Screening/Early Detection
 - Monitor for relapse
 - Guide therapeutic decisions
- Regulatory Uses
 - Patient Stratification
 - Patient Selection/Enrichment
 - Risk-based treatment assignment
 - Intermediate Endpoint or Surrogate Endpoint

Biomarker as an Endpoint

FDA

- Intermediate clinical endpoint
 - Can be measured earlier than morbidity or mortality, but reasonably likely to predict clinical benefit
- Surrogate endpoint reasonably likely to predict clinical benefit
- Surrogate Endpoint
 - Clinical validation that the marker predicts clinical benefit

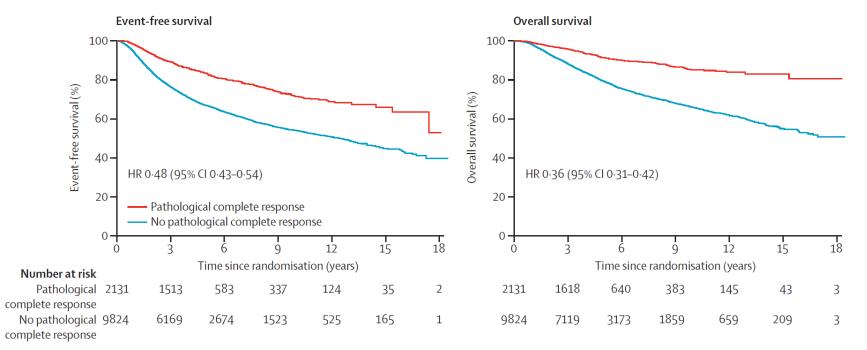
Development of Endpoints for Regulatory Use: Validation as a Surrogate

- Prentice Criteria
 - The surrogate must be a correlate of the true clinical endpoint
 - The treatment effect on the surrogate should capture the full effect of treatment on the clinical endpoint
- Meta-analytical methods
 - Patient-level data
 - Allow for assessment of Individual Level and Trial Level Surrogacy
 - Individual Surrogacy- Correlation between candidate surrogate and true clinical endpoint on an individual level
 - Trial Level Surrogacy- Correlation between effect of treatment on the candidate surrogate and the effect of treatment on the true clinical endpoint
 - Surrogate Threshold Effect
 - Minimum treatment effect on the surrogate necessary to predict an effect on the true clinical endpoint

Evidentiary Criteria

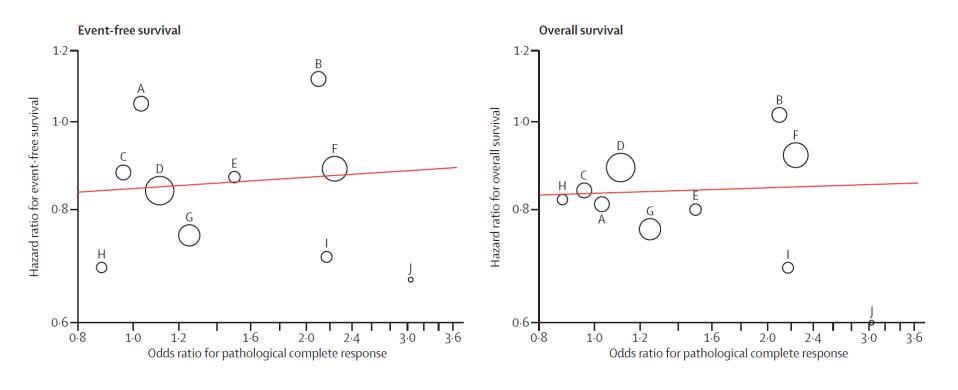
- Meta-analysis Considerations
 - Inclusion of more trials increases the statistical rigor of the analysis and may allow for more interrogation of the data to address uncertainties.
 - Inclusion of trials with a range of treatment effects (positive and negative trials) increases the accuracy and precision of trial level surrogacy assessment.
 - When designing a meta-analysis, consideration of MRD timing of assessment, missing data is important.
 - The trial populations and treatments included in the meta-analysis inform future applicability of the surrogate biomarker.

- Collaborative Trials in Neoadjuvant Breast Cancer
 - Conducted a pooled analysis of mature trials that had both pathologic complete response (pCR) and long-term outcome data
 - Objectives
 - Determine the association between pCR and EFS and OS
 - Determine the definition of pCR which best correlated with long-term outcomes
 - Identify breast cancer subtypes in which pCR best correlated with longterm outcome
 - Determine what magnitude of pCR improvement predicts long-term clinical benefit



pCR Pooled Analysis Results

pCR definition	Event-free survival HR (95 % CI)	Overall survival HR (95 % CI)
ypT0 ypN0	0.44 (0.39–0.51)	0.36 (0.30-0.44)
ypT0/is ypN0	0.48 (0.43–0.54)	0.36 (0.31–0.42)
ypT0/is	0.60 (0.55-0.66)	0.51 (0.45–0.58)

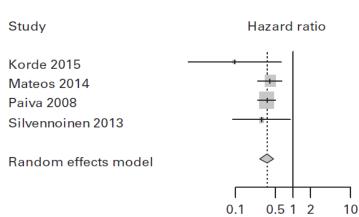


Individual-Level Surrogacy

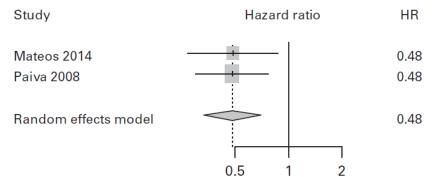
• Trial-Level Surrogacy

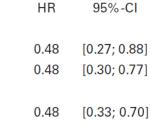
R² 0.03 (95%CI:0.00,0.25)

R² 0.24 (95%CI:0.00,0.70)


FDA

- CTNeoBC Summary
 - No pCR association with long-term outcomes (EFS and OS) at a trial level, only on an individual level
 - A standard definition that includes assessment of the nodes (ypT0ypN0 or ypT0/isypN0) should be used in future trials
 - Magnitude of pCR improvement that predicts longterm clinical benefit could not be established
 - Possibly due to heterogeneity of population, low pCR rates, lack of targeted therapies


MRD in MM Meta-analyses


FDA

Progression-Free Survival

Overall Survival

HR

0.10

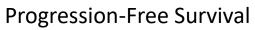
0.40

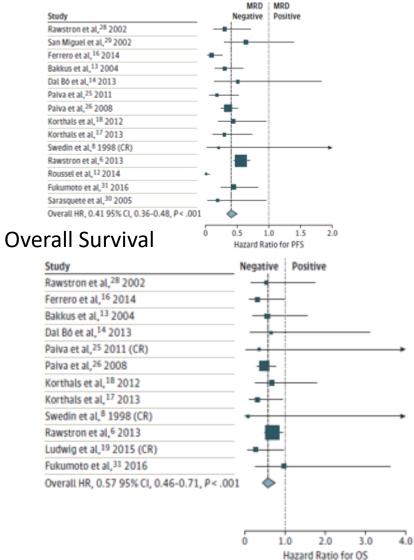
0.35

0.28

0.35

95%-CI


[0.02; 0.61]


[0.25; 0.65]

[0.25; 0.50]

[0.09; 0.89]

[0.27; 0.46]

Munshi Jama Oncol 2016

MRD in MM Meta-analyses

- Remaining Questions
 - Does MRD in MM have trial level surrogacy using individual patient level data?
 - What is the threshold that best correlates with clinical benefit?
 - What is the appropriate timing of assessment?
 - Does Sustained MRD better correlate with long-term outcomes?
 - Should MRD be assessed in those only in CR, VGPR, PR?

BELLINI Trial: A Cautionary Tale

 Phase 3, double-blind, randomized, placebo-controlled trial of bortezomib and dexamethasone with or without venetoclax in patients with relapsed/refractory, multiple myeloma who had received 1-3 prior lines of therapy

			1.0) —									
	Venetoclax Arm	Placebo Arm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*+	+++++++=== 	 	-		+++	
ORR	82.0% (75.8, 87.1)	68.0% (57.8, 77.1)		3 —					14-84	****	4 11 11 11 11 11 11 11 11 11 11 11 11 11	L 	
MRD negativity	13.4% (8.9, 19.0)	1.0% (0.0, 5.6)	(E) 0.6										
rate (10^{-5})	13.470 (0.3, 13.0)	1.070 (0.0, 0.0)	ll Surviva					Ven+ (N=19			o+ <u>Bd</u> =97)		
			0.4	-	-	Events (%)		41 (2:		_	(11.3)	_	
Median PFS	22.4 (15.3 <i>,</i> NR)	11.5 (9.6, 15.0)	0		- F	Median OS			eached		t reached	_	
(mos) (95% Cl)			0.2	2	Ľ	HR (95% CI))	2.03 ((1.04,3.94)			
						Ven + Bo							
Hazard Ratio	0.63 (0.4	44, 0.90)				Pbo + Bo	d						
	0.05 (0	++, 0:50)	0.0				-		1				
(95% CI)				0	3	6	9	12 Time (I	15 Months)	18	21	24	27
				At Ris	k (Cumulativ	e Incidence)		nine (i	montais)				
			Ven + Bd Pbo + Bd	194 (0 97 (0	0) 185 (6)) 95 (0)	170 (16) 92 (3)	162 (21) 89 (6)	155 (26) 87 (7)	136 (35) 73 (9)	91 (39) 44 (11)	36 (40) 20 (11)	8 (41) 5 (11)	0 (41 0 (11

Ven = Venetoclax; Pbo = Piacebo; Bd = Bortezomio+Dexamethasone

BELLINI Trial: A Cautionary Tale

Table. Progression-Free Survival	, Overall Survival, and Clinical Response Rates.
----------------------------------	--

	н	PFS R (95% CI)		OS HR (95% CI)				
All patients (N=291)	0.630 (0.443-0.897)			2.027 (1.042-3.945)				
High-risk cytogenetics ^a (N=49)	1.206 (0.577-2.520)			NE				
Standard-risk cytogenetics ^b (N=213)	0.544 (0.354-0.837)			1.505 (0.727-3.115)				
t(11;14) (N=35)	0.110 (0.022-0.560)			0.343 (0.031-3.842)				
BCL-2 high (N=140)	0.502 (0.294-0.856)			1.446 (0.568-3.678)				
BCL-2 low (N=37)	1.387 (0.431-4.468) All patients t(NE				
				1;14)	-2 high			
	Ven (N=194)	Pbo (N=97)	Ven (N=20)	Pbo (N=15)	Ven (N=93)	Pbo (N=47)		
opp	82%	68%	90%	47%	86%	68%		
OKK		5%	45%	7%	32%	4%		
and the second	26%	370						
ORR ≥CR ≥VGPR	26% 59%	36%	70%	27%	68%	34%		

response.

a. t(4;14), t(14;16), or del(17p)

b. No high-risk cytogenetics

BELLINI Trial: A Cautionary Tale

- Concerning OS results
 - Need evaluation of endpoints that can be assessed at Early timepoints <u>and</u> Late timepoints that provide definitive evidence of clinical benefit
 - Bellini Trial showed divergent OS and ORR, PFS, MRD results
 - Additional Information is needed on MRD as an endpoint in MM

MRD Today and Future Considerations

- MRD results used to support accelerated approval in ALL
 - Blinatumomab approval in MRD-positive B-cell Precursor ALL
 - Accelerated approval based on MRD response rate and hematological relapse-free survival
- MRD results have been included in Prescribing Information in CLL
 - Venetoclax, Obinutuzumab
- MRD results have been included in the Prescribing Information in MM
 - Daratumumab, Abecma
 - Currently recommended as a secondary endpoint
- Ongoing efforts in various diseases to formally evaluate MRD

Conclusions

- Validated Endpoints are needed for Regular Approval
- pCR and MRD are not validated surrogate endpoints
- Existing uncertainty and remaining questions regarding these endpoints for regulatory purposes
- MRD, pCR and other biomarker assessments in clinical trials should be discussed with the Agency
- FDA is committed to working with the community on the development of biomarkers.

Thanks...

- Laleh Amiri- Kordestani
- Marc Theoret
- Julia Beaver

Session 3: Clinical Validation and Regulatory Acceptance of Biomarkers as Surrogate Endpoints

Moderator:

- Norman Stockbridge, US Food and Drug Administration *Panelists:*
- Steve Ryder, Rallybio Inc.
- Henrik Zetterberg, University of Gothenburg
- Lesley Inker, Tufts University
- Nicole Gormley, US Food and Drug Administration
- Aliza Thompson, US Food and Drug Administration
- Jeff Allen, Friends of Cancer Research

Session 3: Clinical Validation and Regulatory Acceptance of Biomarkers as Surrogate Endpoints

Discussion Questions:

- 1. What are the challenges associated with validating biomarkers, and what approaches may support efficient biomarker validation?
- 2. What characteristics and processes are shared by programs with a strong track record in evaluating candidate surrogates?
- 3. What more can be done to assist developers in validating candidate surrogates?
- 4. How can early involvement and communication with regulatory agencies support biomarker validation?

Break

We will be back momentarily.

The next panel will begin at 2:05 p.m. (U.S. Eastern Time)

Session 4: Beyond Surrogate Endpoints: Other Ways Translational Science Can Support Drug Development

2:05 pm - 3:30 pm EST

Leslie Gordon

Medical Director and Co-Founder Progeria Research Foundation

Hutchinson-Gilford Progeria Syndrome Case Study

Beyond Surrogate Endpoints: Other Ways Translational Science Can Support Drug Development

> Translational Science in Drug Development: Surrogate Endpoints, Biomarkers, and More May 24, 25, 2022 Duke Margolis Center for Health Policy

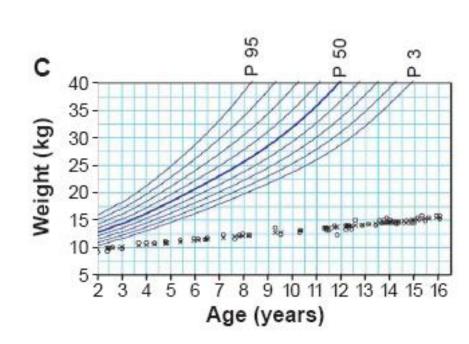
Leslie B. Gordon, MD, PhD

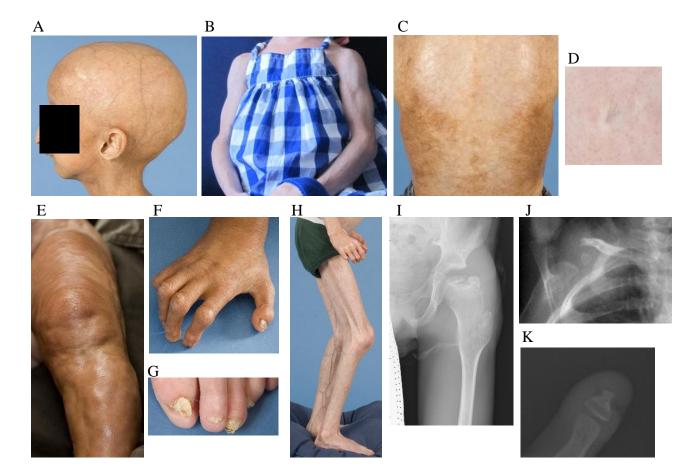
The Progeria Research Foundation Hasbro Children's Hospital & Alpert Medical School of Brown University Boston Children's Hospital Boston and Harvard Medical School

Faculty Disclosures, Leslie B. Gordon, MD, PhD

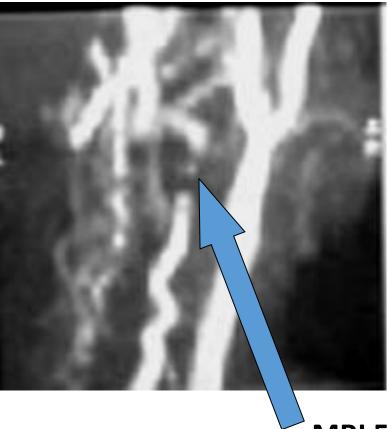
- Volunteer Medical Director, The Progeria Research Foundation
- In-kind donations: Receive medication for Progeria clinical trials from 3 drug companies (names not included at FDA's request) at no cost
- Sources of Funding for Research: The Progeria Research Foundation; FDA

Progeria: An Ultrarare Fatal Premature Aging Disease



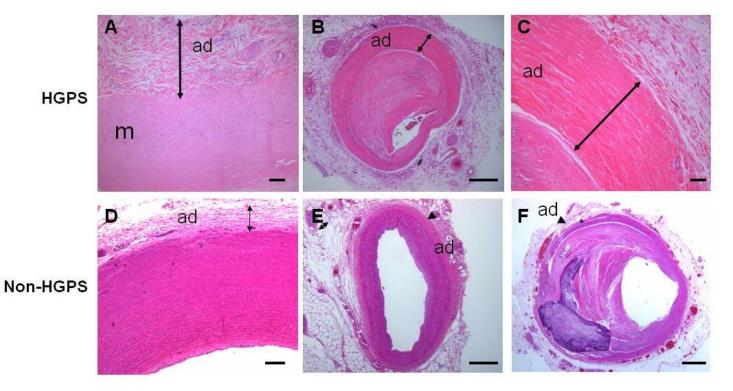


- Segmental "Premature Aging"
- Prevalence 1/20 million
- 19 children in US
- ~400 children worldwide


- Autosomal Dominant
- Lifespan Ave 14.5 yrs.
- Death due to premature atherosclerosis

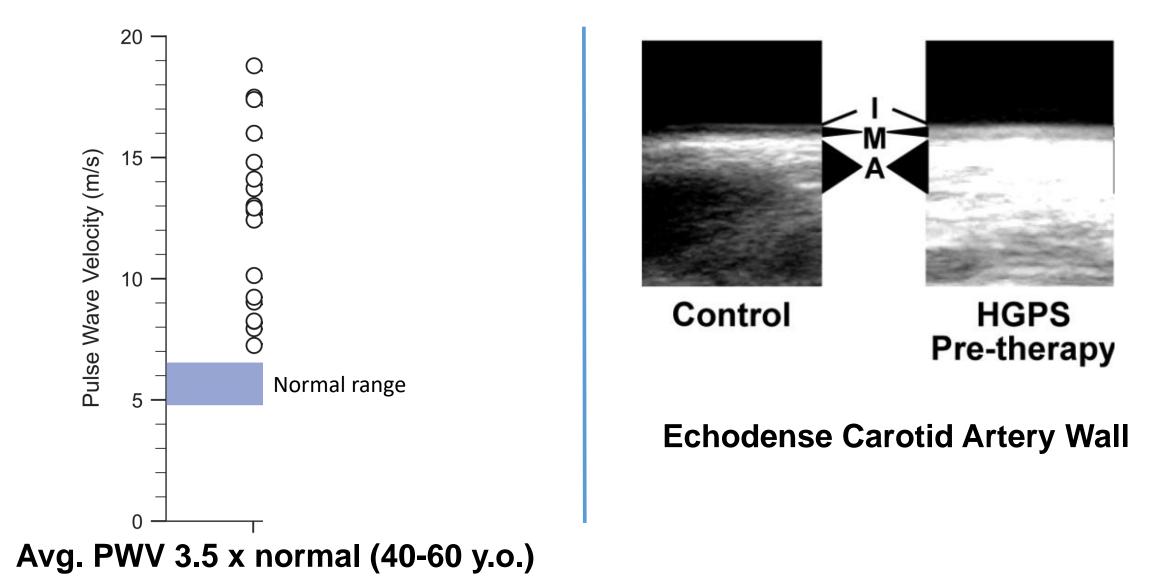
Clinical Signs of HGPS

CV and Neurovascular Disease



- Global, Progressive
- Heart Failure, Strokes

MRI 5 year old with carotid obstruction


Human HGPS Vascular Disease

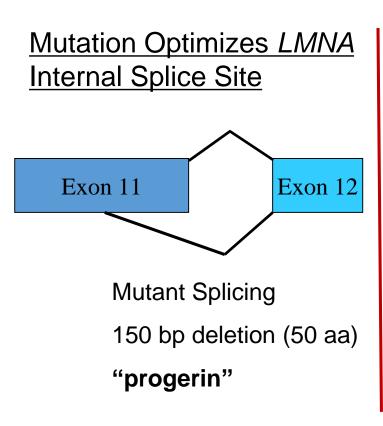
- Calcific Plaques
- Thick Fibrotic Adventitia
- Medial Cell Death with Extracellular Matrix Deposition

Olive et al, Hypertension, 2010

Assays Demonstrating Extremely Stiff Vessels In HGPS

2003 Gene Discovery

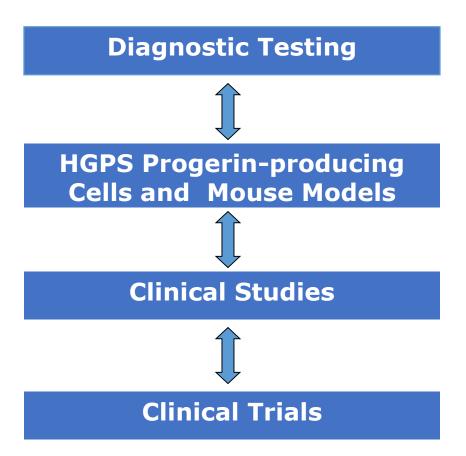
letters to nature


Recurrent *de novo* point mutations in lamin A cause Hutchinson–Gilford progeria syndrome

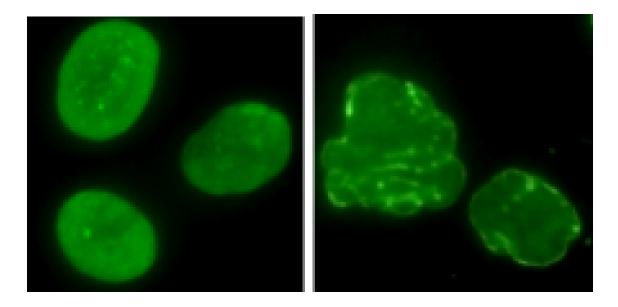
Maria Eriksson*, W. Ted Brown†, Leslie B. Gordon‡, Michael W. Glynn§, Joel Singer||, Laura Scott||, Michael R. Erdos*, Christiane M. Robbins*, Tracy Y. Moses*, Peter Berglund¶, Amalia Dutra*, Evgenia Pak*, Sandra Durkin§, Antonei B. Csoka#, Michael Boehnke||, Thomas W. Glover§ & Francis S. Collins*

We were catapulted into a new phase...

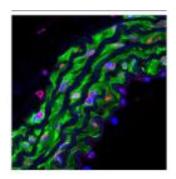
HGPS is Caused by a Single Base Silent Mutation in the LMNA Gene (c.1824 C>T, G608G)

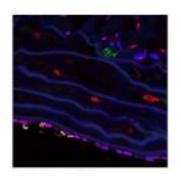


Lamin A: Inner Nuclear Membrane Protein


- Lines the inner nuclear membrane-Scaffolding
- Binds chromatin to effect transcription
- Structural and signaling effects
- Expressed by Differentiated Cell Types
- Undergoes post-translational processing that is defective in HGPS due to 50 aa deletion
- Thus, progerin is short, permanently farnesylated and toxic to cells

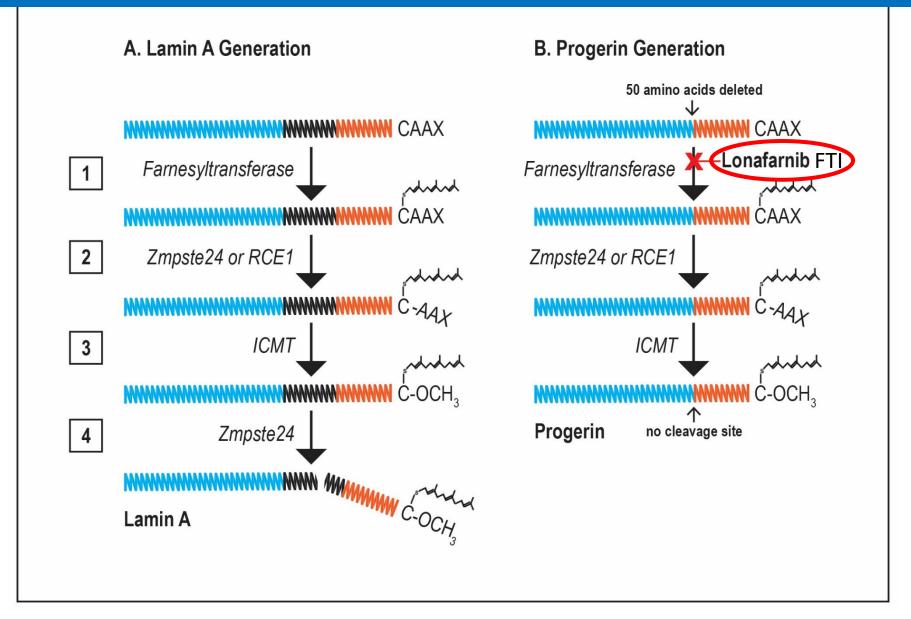
Biology Leads The Way Towards Treatment Trials


Progerin Causes Nuclear Blebbing In Cultured Cells % Blebbed Cells Increases with Passage Number

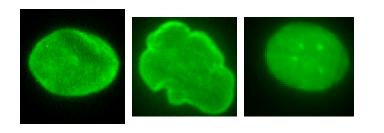

Normal Fibroblast Nuclei Progeria Fibroblast Nuclei

Human Progerin-Producing Mouse Models Created

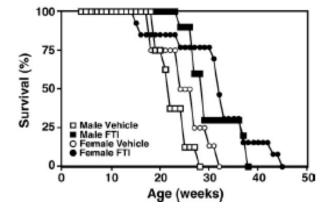
- Human BAC Transgenic G608G Mouse Model (Varga et al (Collins) PNAS 2006)
 - Mice Are Small,
 - Develop CVD but not plaques,
 - Die Early, cause of death unknown
 - Human Progerin Produced
- Mouse Knock-in G609G Mouse Model (Osorio et al (Lopez-Otin) Sci Transl Med 2011)
 - Mouse Progerin Produced
 - Mice Are Small
 - Develop CVD but not plaques,
 - Die Early, cause of death unknown
- Additional endothelial-specific and VSMC-specific mouse models have also been developed



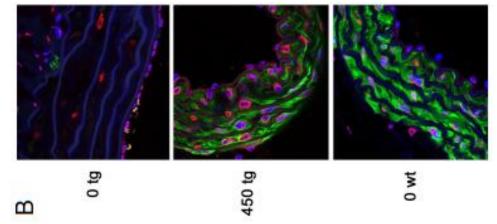
Wild Type Aorta



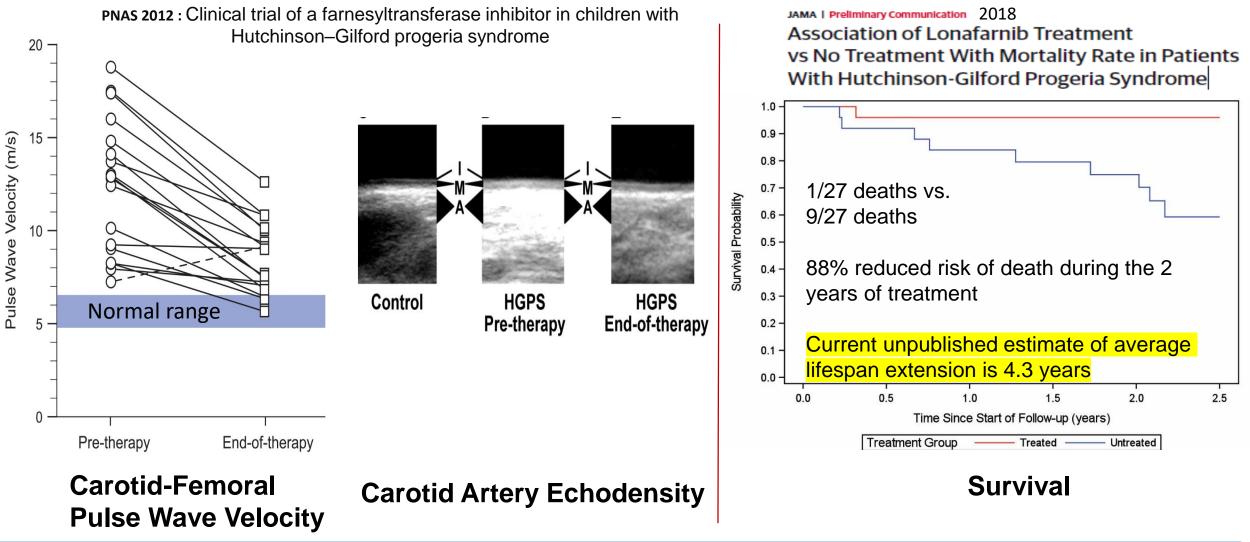
HGPS Aorta


Biology Leads Us To Potential Treatment

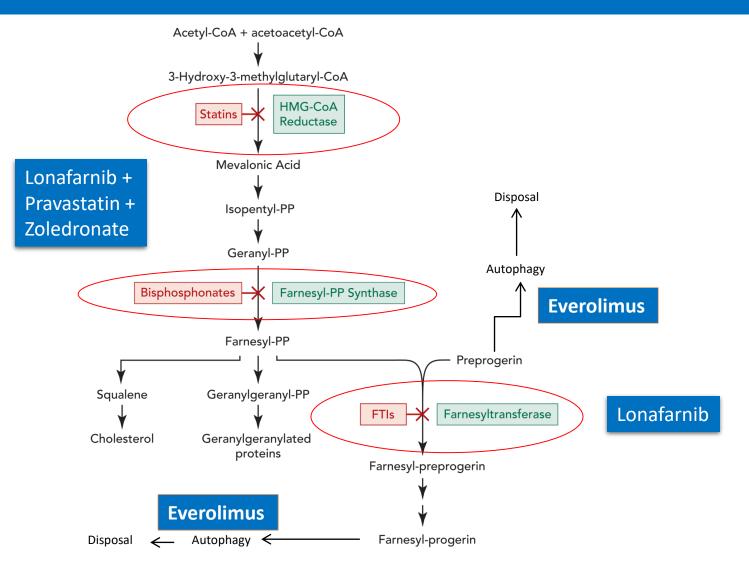
Farnesyltransferase Inhibition as Treatment (not all using the FTI in our trials)


Normal HGPS HGPS with FTI, 72 hrs. FTI Lonafarnib Normalized human HGPS Fibroblast Nuclear Shape

FTI ABT-100 Improved Disease *in Zmpste24 Deficient Mouse Model*, Including lifespan


When treated with FTI tipifarnib after birth, Cardiovascular disease did not develop

When allowed to develop cardiovascular disease for 9 months, then treated with FTI tipifarnib, Normal vasculature detected

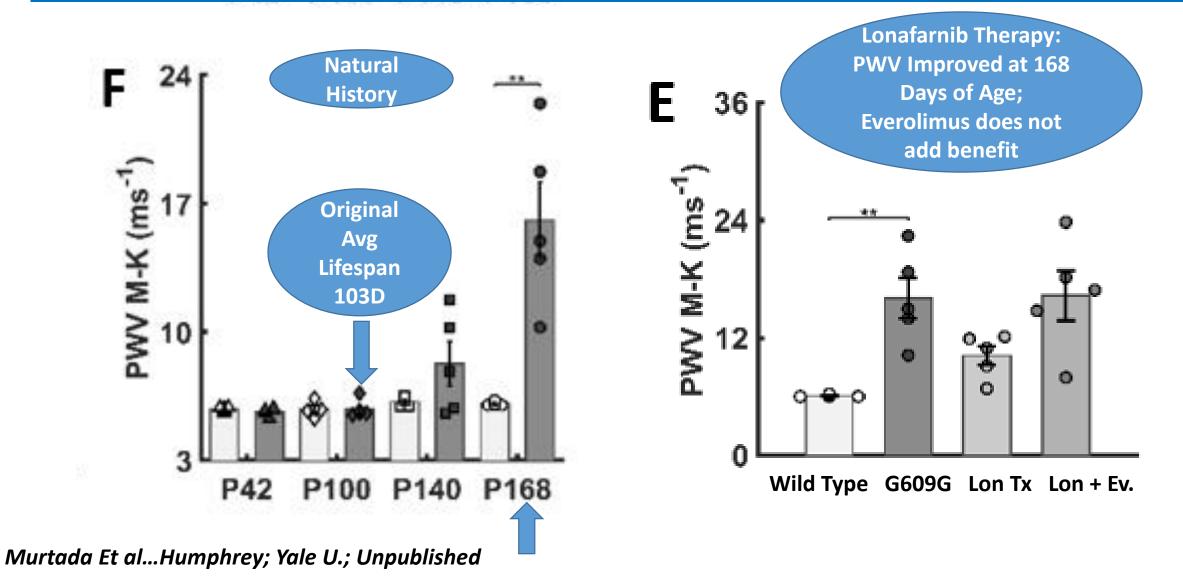

Capell et al 2005; Glynn et al, 2005; Toth et al, 2005; Fong et al, 2006

Improvements With Lonafarnib Treatment in Children: Changes in the Arteries and Extended Survival

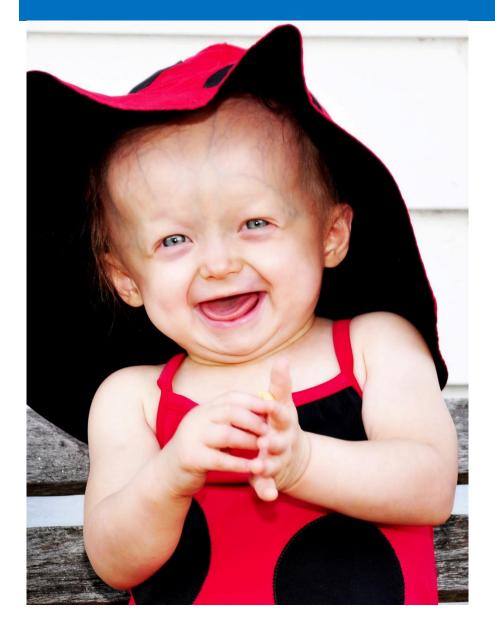
Lonafarnib (Zokinvy) is our first FDA approved drug for Progeria

Biology Leads Us To Clinical Trials

Statin plus Bisphosphonate Farnesyl Formation Inhibition

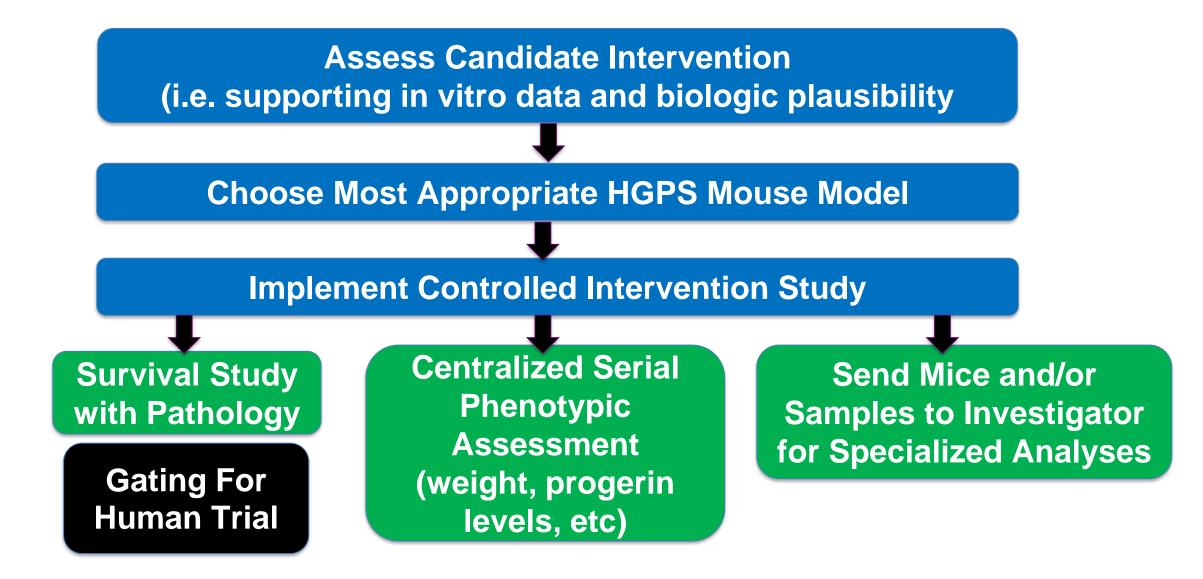

- Zmpte24 Mutations do result in progeroid disease in humans, but not identical to HGPS and not progerin-producing (abnormal prelamin A causes disease)
- This model is not progerin-producing, no CVD
- Zmpste24 mice have spontaneous fracture and neuro. deficits, unlike HGPS
- Human Clinical Trial of HGPS in Combination with Lonafarnib, Pravastatin and Zoledronic acid Showed No Benefit Over and Above Lonafarnib Monotherapy
- A great animal model, but not optimal for drug development in HGPS

Animal Husbandry: G609G Homozygote:



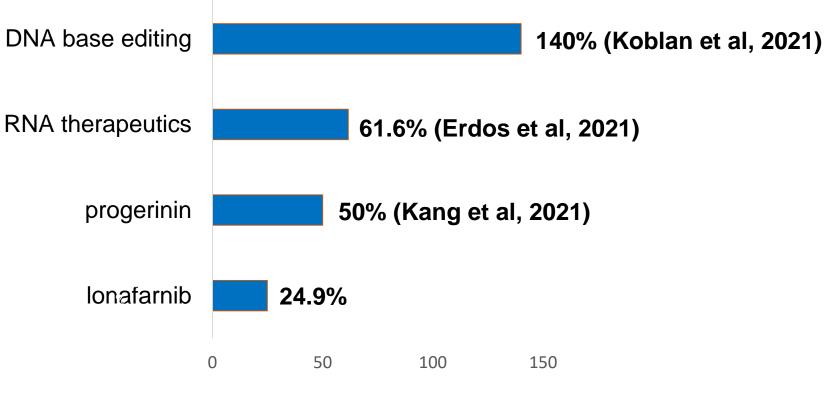
- soft gel-based chow on the floor of cage +
- introduction of a caretaker mouse in each cage
- original 50% survival at 103 days (Osorio et al., 2011)
- new extended the mean lifespan = 168 days
- allowed the cardiovascular phenotype to worsen similar to that observed clinically in patients.
- cardiovascular function progressed to extreme stiffening and diffuse vascular calcification.

Extended Mouse Lifespan Potentiates Overlap with Human Cardiovascular Disease

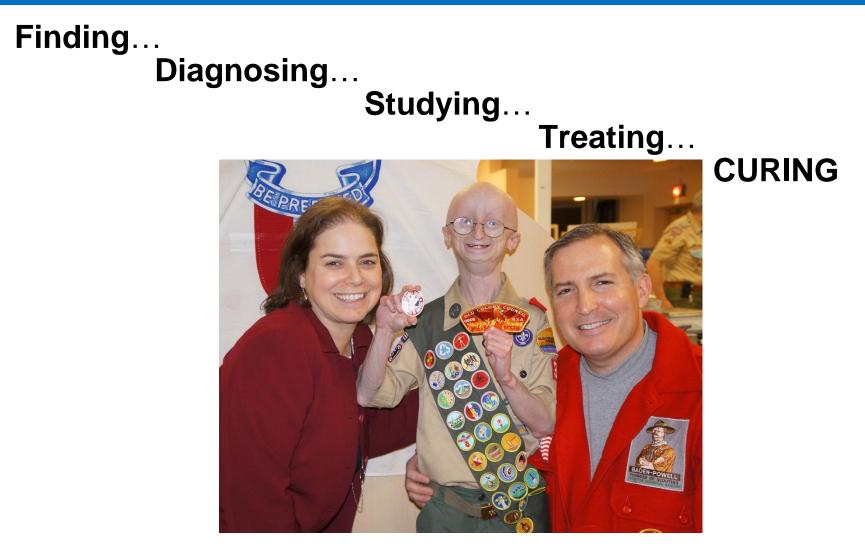

Getting The Word Out for Maximal Success

Collection and Distribution of Best Practices and Guidance for Basic Scientists

- New Publications
- Investigator Surveys
- Email Blitz's with new information
- Resource Center
- Posters at Scientific Meetings


Centralizing Disease-Specific Animal Testing To Optimize Outcomes and Comparability

Potential New Treatments' effects on Progeria Mouse Model Survival*



% Increase in Progeria mouse lifespan compared to controls

* Note that mouse models in use were not the same across all studies

Determination and Collaboration

Together, we WILL find the cure! www.progeriaresearch.org

Estelle Marrer-Berger

Senior Translational Safety Leader

Roche

Permission to include Dr. Marrer-Berger's slides is pending. This deck will be updated at such time when it is received.

Christine Garnett

Clinical Reviewer Division of Cardiology and Nephrology U.S. Food and Drug Administration

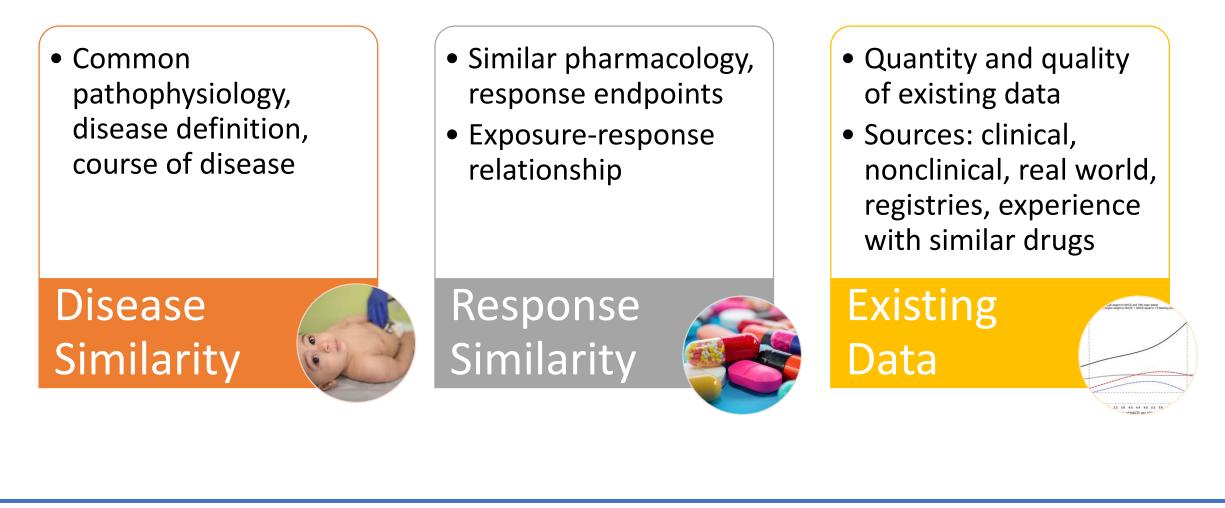
Clinical Translational Science: Leveraging Adult Efficacy Data for Pediatrics using Bridging Biomarkers

Christine Garnett, PharmD Division of Cardiology and Nephrology, OND, CDER, FDA

Disclaimer and Acknowledgements

My presentation reflects my opinion and is not considered official FDA guidance.

I am grateful to Drs. Norman Stockbridge, Lynne Yao and Tom Fleming for their insights and contributions to this presentation.



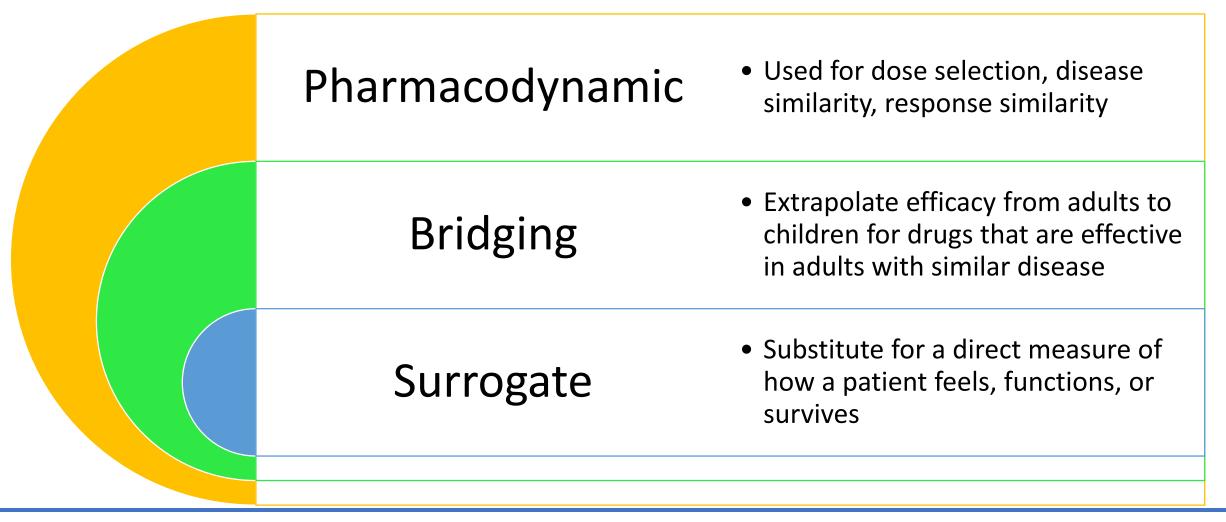
Pediatric Extrapolation

An approach to providing evidence in support of effective and safe use of drugs in the pediatric population when it can be assumed that the course of the disease and the expected response to a medicinal product would be sufficiently similar in the pediatric and reference (adult or other pediatric) population.

133

Factors Influencing Extrapolation Approaches

Pediatric Extrapolation Approaches


Pharmacokinetic and safety study using exposure matching

Controlled trial using bridging biomarkers

*confidence in similarity of disease *less confidence in similarity of exposure-response in children Adequate and well-controlled trial(s) using clinical or surrogate endpoints

Use of Biomarkers in Pediatric Extrapolation

Criteria for Establishing Bridging Biomarker

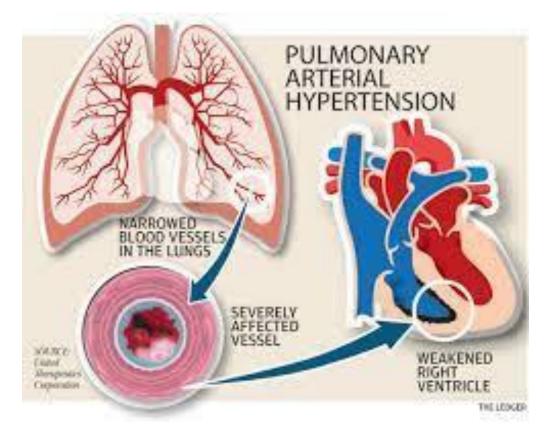
Disease processes in pediatric and adult settings are closely related biologically In adults, intervention is safe and has substantial effects on FFS measures and biomarker

Effects on the bridging biomarker capture effects on the principal causal pathway through which the disease process meaningfully influences FFS measures

Intervention does not have important unintended effects on FFS measures that are not captured by the bridging biomarker

In adults, intervention's net effect on FFS measures is consistent with what would be predicted by the level of intervention's effect on the bridging biomarker

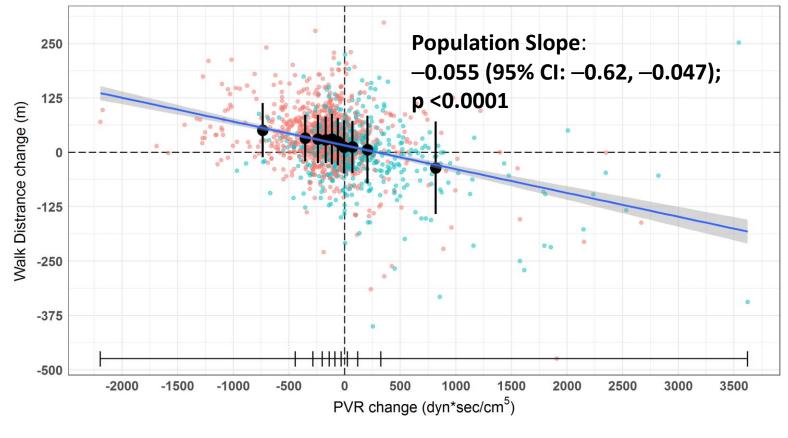
FDA Uses Bridging Analyses of Pediatric Hemodynamic Data to Adult Exercise Capacity in the Approval of Tracleer® (Bosentan) for Pediatric Pulmonary Arterial Hypertension Patients 3 Years of Age and Older


On September 5, 2017, the US Food & Drug Administration (FDA) approved Tracleer (bosentan) for the treatment of pulmonary arterial hypertension (PAH) (WHO Group 1) in pediatric patients aged 3 years and older. This is the first approval of a drug for the treatment of pediatric PAH with idiopathic or congenital PAH to improve pulmonary vascular resistance (PVR), which is expected to result in an improvement in exercise ability. FDA's efficacy evaluation relied on the findings from one of the trials – BREATHE-3, an open-label, uncontrolled study in 19 pediatric patients with PAH aged 3 to 15 years which measured PVR, a cardio-pulmonary hemodynamic variable. FDA conducted analyses using data from previously approved programs in adults that established the relationship between improvements in the 6-minute walk distance (6MWD) and PVR in adults and showed that the relationship was consistent across different approved drug classes (e.g., endothelin receptor antagonist, prostanoids, PDE5 inhibitor, and soluble guanylate cyclase stimulator). The observed reduction in PVR in pediatrics from the BREATHE-3 study was used to bridge the bosentan efficacy findings in adults.

–American College of Clinical Pharmacology, 2017

PVR as Bridging Biomarker for Pulmonary Arterial Hypertension

- Adult and pediatric PAH subtypes of idiopathic, heritable and associated with congenital heart disease are similar in pathophysiology
- PVR is a hemodynamic measure of pulmonary arterial pressure and cardiac output. PVR is on the causal pathway through which the disease process impacts how patients feel, function and survive

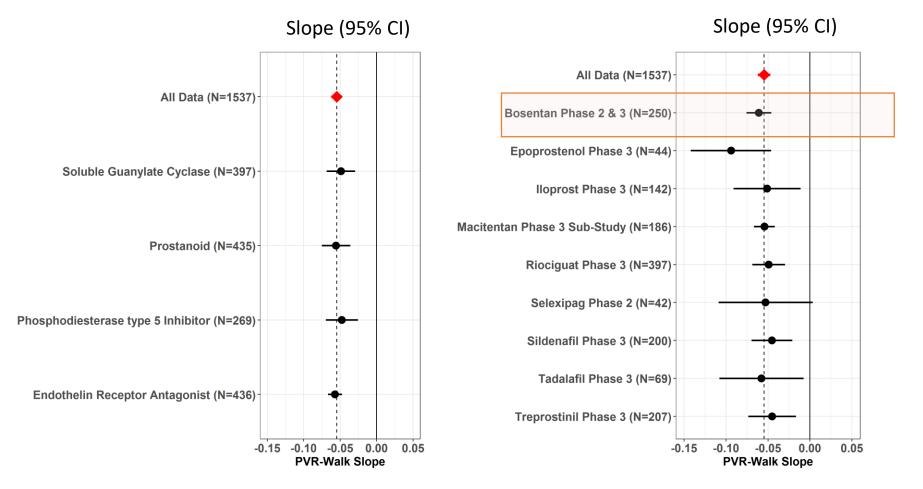


MARGOLIS CENTER

for Health Policy

139

Improvement in $\triangle 6MWD$ Corresponds to Decrease in $\triangle PVR$ in Adults



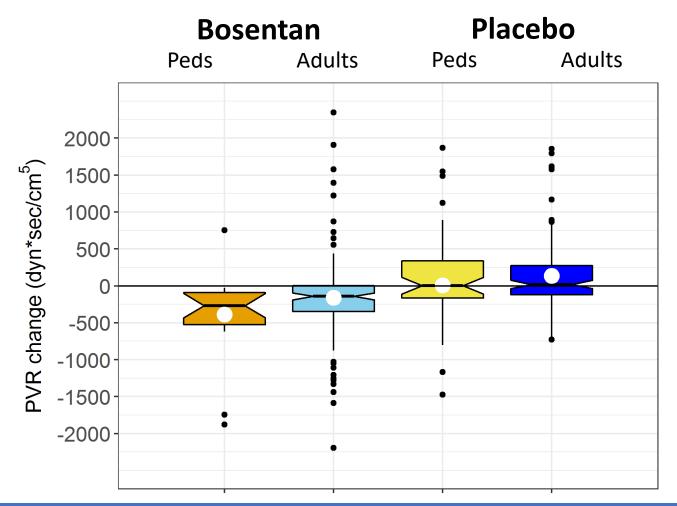
Active Treatment
Placebo

Shown are the observed data by treatment assignment overlaid with regression slope and 95% confidence interval. Black error bars represent mean and standard deviation Δ 6MWD within each decile of Δ PVR.

MARGOLIS CENTER for Health Policy 140

Consistent Relationship Across Drug Classes and Drugs in Adults

Forest plot of mean (95% CI) regression slopes shown by drug class (left) and individual drugs (right). The dashed line is the mean slope of pooled data.



PVR explains the treatment effect on 6 min walk distance in adults

- Bosentan had significant effects on $\Delta 6$ MWD and ΔPVR :
 - Clinical endpoint, $\Delta 6$ MWD : +35 m
 - Biomarker, ΔPVR : -250 dyne*sec/cm⁵
- 50% treatment effect on $\Delta 6$ MWD explained by ΔPVR in the data analytical model with and without treatment
- No imbalance of deaths or serious adverse events in both adults and children

Bosentan significantly reduced $\triangle PVR$ in children and adults

Box plots show the mean (white circles), median (notch); 95% CI of median (width of notch); 25th and 75th percentile (width of box); 1.5* interquartile range (whiskers); and outliers (filled circles).

Clinical Review of NDA020927 (2017)

143

Bosentan Indication

- Tracleer® is indicated for the treatment of pulmonary arterial hypertension (PAH) (WHO Group 1):
 - in adults to improve exercise ability and to decrease clinical worsening. Studies establishing effectiveness included predominantly patients with WHO Functional Class II-IV symptoms and etiologies of idiopathic or heritable PAH (60%), PAH associated with connective tissue diseases (21%), and PAH associated with congenital heart disease with left-to-right shunts (18%).
 - in pediatric patients aged 3 years and older with idiopathic or congenital PAH to improve pulmonary vascular resistance (PVR), which is expected to result in an improvement in exercise ability.

Conclusions

- Use of bridging biomarkers in pediatric extrapolation is distinct from other roles for biomarkers:
 - Not PD marker that is used to support dose selection
 - Not validated surrogate endpoint that can reliably predict the net effect of the intervention on feels, functions, or survives outcomes.
- To establish a bridging biomarker in registrational decisionmaking, the biomarker should satisfy the 5 core criteria
- Pediatric extrapolation using a bridging biomarker has been used to approve drugs for pediatrics
 - Bosentan for pediatric PAH

References

- ICH E11(R1): Clinical Investigation of Medicinal Products in the Pediatric Population. https://www.fda.gov/regulatory-information/search-fda-guidancedocuments/e11r1-addendum-clinical-investigation-medicinal-productspediatric-population
- ICH E11A: Pediatric Extrapolation Guideline (draft, currently under public consultation)
- ADEPT 7 workshop (September 1, 2021) https://cersi.umd.edu/2017-drugdevelopment-pediatric-heart-failure-workshop
- Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996;125(7):605-613. doi:10.7326/0003-4819-125-7-199610010-00011
- Clinical Review of NDA020927. TRACLEER (bosentan) dispersible tablets.2017. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209279Orig1s000M edR.pdf.

Session 4: Beyond Surrogate Endpoints: Other Ways Translational Science Can Support Drug Development

Moderator:

- David Strauss, US Food and Drug Administration *Panelists:*
- Leslie Gordon, Brown University
- Estelle Marrer-Berger, Roche
- Christine Garnett, US Food and Drug Administration
- Anthony Durmowicz, Cystic Fibrosis Foundation
- Lynne Yao, US Food and Drug Administration

Session 4: Beyond Surrogate Endpoints: Other Ways Translational Science Can Support Drug Development

Discussion Questions:

- 1. What translational approaches assist in drug development programs beyond use of surrogate endpoints?
- 2. What benefits and challenges exist in using these translational approaches to support drug development?
- 3. How can translational science approaches support regulatory submissions for accelerated approval or traditional approval?
- 4. Is there more that can be done to encourage use of these approaches?

Session 5: Opportunities and Challenges for Incorporation of Translational Science in Clinical Development Programs

3:30 pm – 4:15 pm EST

Session 5: Opportunities and Challenges for Incorporation of Translational Science in Clinical Development Programs

Moderator:

- Michael Pacanowski, US Food and Drug Administration *Panelists:*
- Jeffrey Siegel, US Food and Drug Administration
- David Reese, Amgen
- Jen Farmer, Friedrich's Ataxia Research Alliance
- Steve Hoffmann, Foundation for the National Institutes of Health

Session 5 : Opportunities and Challenges for Incorporation of Translational Science in Clinical Development Programs

Discussion Questions:

- 1. Reflecting on the meeting, what are key strategies for optimizing the use of surrogate endpoints and other translational approaches for drug development?
- 2. What are the challenges to taking a biomarker from discovery to validation?
- 3. Is there more that can be done to facilitate the process? What mechanisms might be able to increase the use of translational research studies?
- 4. What are key strategies for facilitating collaboration between stakeholders, with the overall goal of improving therapeutic development and approval?
- 5. What are future considerations and next steps for advancing translational science studies and increasing the use and acceptability of these approaches?

Closing Remarks | Day 2

Michael Pacanowski

Director of the Division of Translational and Precision Medicine

U.S. Food and Drug Administration

Thank You!

Contact Us

healthpolicy.duke.edu

Subscribe to our monthly newsletter at dukemargolis@duke.edu

1201 Pennsylvania Avenue, NW, Suite 500 Washington, DC 20004

DC office: 202-621-2800 Durham office: 919-419-2504

