

Understanding the Use of Negative Controls to Assess the Validity of Non-Interventional Studies of Treatment Using Real-World Evidence

Virtual Public Workshop March 8, 2023, 10:00 AM – 3:00 PM ET

Overview of Key Negative Control Techniques

Method	Brief Description	Key Assumptions [*]	Strengths	Limitations
Bias	In a regression model of outcome on treatment,	- Linear additive	- Intuitive and easy	- Strong modeling
detection/adjust	NCE, and measured covariates, the presence of an	outcome model	to implement in	assumptions
ment via NCE ^{1-4,}	association between NCE and outcome implies		practice	
29,30	residual confounding, while a null association	- The association		 Only leverage one
	implies no empirical evidence of residual	between NCE and		type of negative
	confounding. Under certain assumptions,	unmeasured		controls
	coefficient of NCE equals the unmeasured	confounder is equal to		
	confounding bias.	the association		
		between treatment		
		and unmeasured		
		confounder		
Bias	In a regression model of NCO on treatment and	- Linear additive	- Intuitive and easy	 Strong modeling
detection/adjust	measured covariates, the presence of an	outcome model	to implement in	assumptions
ment via NCO ^{3-5,}	association between NCO and treatment implies		practice	
27,28	residual confounding, while a null association	- The association		 Only leverage one
	implies no empirical evidence of residual	between NCO and	- Connects to	type of negative
	confounding. Under certain assumptions,	unmeasured	traditional	controls
	coefficient of treatment in the NCO model equals	confounder is equal to	difference-in-	
	the unmeasured confounding bias. NCO has also	the association	differences method	
	been used for bias adjustment in survival analysis.	between outcome and		
		unmeasured		
		confounder		
P-value	By estimating the effect of exposure on outcomes	- Bias follows a normal	- Intuitive and easy	- Strong

	and an end of the				
calibration using	across	s a collection of settings where the exposure	distribution whose	to implement in	distributional
NC pairs ⁶⁻¹⁰	is not	believed to cause the outcome, one can	mean and variance can	practice	assumption
	estima	ate an empirical null distribution of the	be corrected estimated		
	expos	ure effect and compute calibrated p-values	using negative drug-	- Utilizes the rich	- Validation of the
	that ta	ake both random and systematic error into	outcome pairs	drug-outcome	large number of
	accou	nt.		information in EHR	negative drug-
				data	outcome pairs
					selected
Control outcome	Searcl	h for the causal effect (constant additive	- Enriching the	 Leverages the NCO 	- Relies on the
calibration	effect	¹¹ or nonparametric identification of the	adjustment set of	to search for the	conditional
(COCA) using	avera	ge treatment effect on the treated ³²) such	covariates with the	right amount of	independence
NCO ^{11,32}	that tl	he NCO-treatment association is null,	potential outcome	treatment effect	assumption
	adjust	ting for covariates and Y(0).	under no treatment,		
			Y(0), suffices to adjust		 Only leverage one
			for confounding		type of negative
			between NCO and		controls
			treatment		
(Generalized)		ifference-in-difference method adjusts for	- Confounding of NCO-	 Leverages the 	- Relies on additional
difference-in-		asured confounding leveraging the baseline	treatment relationship	baseline outcome	model assumption
differences using		me which is an NCO. There is also a scale-	equals the confounding	which is widely	
NCO ¹²⁻¹³		ant generalization of the difference-in-	of outcomes-treatment	available as NCO to	- Only leverage one
	differe	ences method.	on the quantile scale	adjust for	type of negative
				confounding bias	controls
Double negative		eferred to as proximal causal learning in the	- NCO and NCE provide	 Leverages a pair of 	- Need to identify an
control		ture. Leverage an NCO and an NCE to identify	sufficient information	NCs to fully identify	NCO and an NCE
method ^{14-26,31}		l effect subject to unmeasured confounding	about the unmeasured	bias; no modeling	
		ut any modeling restriction. Methods have	confounder	assumption	
		developed for point exposure ^{14,15,17} , discrete		required, allows for	
		g ¹⁶ , longitudinal setting ^{15,18} , survival		flexible modeling,	
	-	sis ¹⁹ , mediation analysis ²⁰ , panel data		provides double	
		$g^{21,22,31}$, heterogeneous treatment effect ²³ ,		robustness	
	dynan	nic treatment regime ²⁴ , test-negative		methods, and	
	-	25			
	-	1 ²⁵ , outcome-dependent sampling ²⁶ .		applies to a range of settings	

Data-driven	Search for triplets of disconnected NCs then	- Linear structural	- Data-driven	- Strong model
automated	aggregate all candidate NC pairs to estimate the	equation model	selection and	assumption
negative control	average treatment effect		validation of	
estimation		- Disconnected NCs:	negative control	
(DANCE) ³³		NCs causally related to		
		neither the treatment	- Estimates causal	
		nor the outcome	effect combining all	
			NC pairs	

* Only listing key assumptions in addition to the assumption that the selected NCE and/or NCO variables are valid NC = negative control; NCE = negative control exposure; NCO = negative control outcome

** This overview table of key negative control techniques was developed by Dr. Xu Shi.

Bibliography

1. Flanders WD, Klein M, Darrow LA, Strickland MJ, Sarnat SE, Sarnat JA, Waller LA, Winquist A, Tolbert PE. A method for detection of residual confounding in time-series and other observational studies. Epidemiology (Cambridge, Mass.). 2011 Jan;22(1):59. Smith GD, Lipsitch M, Tchetgen ET, Cohen T. Negative control exposures in epidemiologic studies. Epidemiology. 2012 Mar 1;23(2):350-2.

2. Weisskopf MG, Tchetgen Tchetgen EJ, Raz R. Commentary: on the use of imperfect negative control exposures in epidemiologic studies. Epidemiology. 2016 May 1;27(3):365-7.

3. Arnold BF, Ercumen A, Benjamin-Chung J, Colford Jr JM. Brief report: negative controls to detect selection bias and measurement bias in epidemiologic studies. Epidemiology (Cambridge, Mass.). 2016 Sep;27(5):637.

4. Shi X, Miao W, Tchetgen Tchetgen EJ. A selective review of negative control methods in epidemiology. Current epidemiology reports. 2020 Dec;7:190-202.

5. Sanderson E, Richardson TG, Hemani G, Davey Smith G. The use of negative control outcomes in Mendelian randomization to detect potential population stratification. International journal of epidemiology. 2021 Aug;50(4):1350-61.

6. Schuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Statistics in medicine. 2014 Jan 30;33(2):209-18.

7. Schuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA. Robust empirical calibration of p-values using observational data. Statistics in medicine. 2016 Sep 9;35(22):3883.

8. Schuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA. Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data. Proceedings of the National Academy of Sciences. 2018 Mar 13;115(11):2571-7.

9. Schuemie MJ, Ryan PB, Hripcsak G, Madigan D, Suchard MA. Improving reproducibility by using high-throughput observational studies with empirical calibration. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018 Sep 13;376(2128):20170356.

10. Gruber S, Tchetgen Tchetgen EJ. Limitations of empirical calibration of p-values using observational data. Statistics in medicine. 2016 Sep 30;35(22):3869-82.

11. Tchetgen Tchetgen EJ. The control outcome calibration approach for causal inference with unobserved confounding. American journal of epidemiology. 2014 Mar 1;179(5):633-40.

12. Glynn A, Ichino N. Generalized nonlinear difference-in-difference-in-differences. V-Dem Working Paper. 2019 Jun 1;90.

13. Sofer T, Richardson DB, Colicino E, Schwartz J, Tchetgen Tchetgen EJ. On negative outcome control of unobserved confounding as a generalization of difference-indifferences. Statistical science: a review journal of the Institute of Mathematical Statistics. 2016;31(3):348.

14. Miao W, Geng Z, Tchetgen Tchetgen EJ. Identifying causal effects with proxy variables of an unmeasured confounder. Biometrika. 2018 Dec 1;105(4):987-93.

15. Tchetgen Tchetgen EJ, Ying A, Cui Y, Shi X, Miao W. An introduction to proximal causal learning. arXiv preprint arXiv:2009.10982. 2020 Sep 23.

16. Shi X, Miao W, Nelson JC, Tchetgen Tchetgen EJ. Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding. Journal of the Royal Statistical Society. Series B, Statistical methodology. 2020 Apr;82(2):521.

17. Cui Y, Pu H, Shi X, Miao W, Tchetgen Tchetgen EJ. Semiparametric proximal causal inference. arXiv preprint arXiv:2011.08411. 2020 Nov 17.

18. Ying A, Miao W, Shi X, Tchetgen Tchetgen EJ. Proximal causal inference for complex longitudinal studies. arXiv preprint arXiv:2109.07030. 2021 Sep 15.

19. Ying A, Cui Y, Tchetgen Tchetgen EJ. Proximal causal inference for marginal counterfactual survival curves. arXiv preprint arXiv:2204.13144. 2022 Apr 27.

20. Dukes O, Shpitser I, Tchetgen Tchetgen EJ. Proximal mediation analysis. arXiv preprint arXiv:2109.11904. 2021 Sep 24.

21. Tchetgen Tchetgen EJ, Dukes O, Shi X, Miao W, Richardson D. RE: "SYNTHETIC CONTROL METHODS FOR THE EVALUATION OF SINGLE-UNIT INTERVENTIONS IN EPIDEMIOLOGY: A TUTORIAL". American journal of epidemiology. 2022 May;191(5):965-6.

22. Shi X, Miao W, Hu M, Tchetgen Tchetgen EJ. Theory for identification and inference with synthetic controls: a proximal causal inference framework. arXiv preprint arXiv:2108.13935. 2021 Aug 31.

23. Sverdrup E, Cui Y. Proximal Causal Learning of Heterogeneous Treatment Effects. arXiv preprint arXiv:2301.10913. 2023 Jan 26.

24. Qi Z, Miao R, Zhang X. Proximal learning for individualized treatment regimes under unmeasured confounding. Journal of the American Statistical Association. 2022 Nov 14(just-accepted):1-33.

25. Li KQ, Shi X, Miao W, Tchetgen Tchetgen EJ. Double negative control inference in test-negative design studies of vaccine effectiveness. ArXiv. 2022 Mar 23.

26. Li KQ, Shi X, Miao W, Tchetgen Tchetgen EJ. Doubly Robust Proximal Causal Inference under Confounded Outcome-Dependent Sampling. arXiv preprint arXiv:2208.01237. 2022 Aug 2.

27. Richardson DB, Laurier D, Schubauer-Berigan MK, Tchetgen ET, Cole SR. Assessment and indirect adjustment for confounding by smoking in cohort studies using relative

hazards models. American journal of epidemiology. 2014 Nov 1;180(9):933-40.

28. Tchetgen Tchetgen EJ, Sofer T, Richardson D. Negative outcome control for unobserved confounding under a Cox proportional hazards model. Available at https://biostats.bepress.com/harvardbiostat/paper192/.

29. Flanders WD, Strickland MJ, Klein M. A new method for partial correction of residual confounding in time-series and other observational studies. American journal of epidemiology. 2017 May 15;185(10):941-9.

30. Miao W, Tchetgen Tchetgen EJ. Invited commentary: bias attenuation and identification of causal effects with multiple negative controls. American journal of epidemiology. 2017 May 15;185(10):950-3.

31. Imbens G, Kallus N, Mao X. Controlling for unmeasured confounding in panel data using minimal bridge functions: From two-way fixed effects to factor models. arXiv preprint arXiv:2108.03849. 2021 Aug 9.

32. Tchetgen Tchetgen EJ, Park C, Richardson D. Single Proxy Control. arXiv preprint arXiv:2302.06054. 2023 Feb 13.

33. Kummerfeld E, Lim J, Shi X. Data-driven Automated Negative Control Estimation (DANCE): Search for, Validation of, and Causal Inference with Negative Controls. arXiv preprint arXiv:2210.00528. 2022 Oct 2.

This public workshop is supported by the Food and Drug Administration (FDA) of the U.S. Department of Health and Human Services (HHS) as part of a financial assistance award [U19FD006602] totaling \$4,241,714 with 100 percent funded by FDA/HHS. The contents are those of the author(s) and do not necessarily represent the official views of, nor an endorsement, by FDA/HHS, or the U.S. Government.