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June 11, 2025Synthetic Data Generation  
Using Generative AI to Support Biomedical  
Innovation: A Health Policy Perspective

Regulators and payers globally are exploring the potential of synthetic data as 
one of many applications of generative artificial intelligence (AI) to support both 
operations and decision-making in medical product development. This ongoing 
exploration has highlighted a current need to identify and develop practical 
considerations associated with synthetic data generation use in this context.1,2 
In this policy brief, we explore these areas through a discussion of current 
synthetic data management tools and best practices, ethical considerations for 
the generation and application of synthetic data, and regulatory developments 
to date. We recommend specific steps that regulatory stakeholders and 
practitioners may take to develop and describe regulatory fit-for-use synthetic 
data. Lastly, we offer a risk-based credibility assessment framework that could  
be helpful to for those managing synthetic data derived from generative  
AI applications.

EXECUTIVE SUMMARY

POLICY BRIEF 

Synthetic data can be described as artificial data that 
maintains certain, but not necessarily all, underlying 
data and statistical distributions, e.g., shape and variance, 
and structure, e.g., correlations among the attributes, of 
original datasets while maintaining data de-identification 
and preventing reidentification.2,3 Modern approaches to 
synthetic data generation today involve the use of semi-
supervised or unsupervised generative models, which 
range from powerful, e.g., language learning models or 
large language model (LLMs), generative adversarial 
networks (GANs), and variational autoencoders (VAEs), to 
moderate, e.g., sequential synthesis with decision trees 
or k-nearest neighbors algorithm, to simple, e.g., basic 
simulation.3–10 Each model holds a certain capability to 
synthesize synthetic images and other digital data, e.g., 
real world data (RWD) that comprise electronic health 
records (EHR), medical images, genomic data, audio/

image/video data, and clinical trial data, for likeness  
in underlying variation of original datasets, but without 
being an exact copy of the original dataset. 

Synthetic data generation and use for medical product 
development purposes is of increasing interest among 
regulators globally. For instance, the European Union’s 
(EU) European Medicines Agency (EMA) and the United 
Kingdom’s (UK) Medicines and Healthcare products 
Regulatory Agency (MHRA)’s real-world evidence research 
service--the Clinical Practice Research Datalink--are seeking 
to leverage synthetic data as part of their goals to 
“maximise the generation, interoperability, use and 
exchange of data to support EU decision-making” and 
“validate applications of high fidelity synthetic data for 
sample size boosting and as external control arms,” 
respectively.11,12 Further, the EMA’s draft reflection 

BACKGROUND 
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Despite definitions proposed among certain regulators 
like the FDA, to avoid the risk of misinterpretation, 
synthetic data should be described and interpreted  
on a contextual and purpose-driven basis in practice.1  
For instance, although there are similarities among terms 
that have been used to describe synthetic data, like  
“de-identified data,” “digital twins,” “virtual controls clinical  
trial data,” and “synthetic cohorts;:” there are also important 
distinctions between these terms. For example, the term 
“synthetic cohorts,” initially used to describe external 
comparator arms with patient-level data, can be conflated 
with data generated for purposes of modeling versus 
data that has undergone (possibly modest) privacy 
protection adjustments.15 Context is therefore crucial 
to ensure shared language and nomenclature across 
various contexts involving specific handlers and end-users 
of synthetic data. While not every entity will agree on a 
single definition for synthetic data, we suggest that the 

term is best defined through its uses and applications to 
address a specific context-of-use (COU). As others have 
noted, regulatory pathways are important to stakeholders 
invested in real-world evidence (RWE) development and 
policy to ensure they can function within clear legal and 
practice frameworks.16  

Our assessment of the literature and professional 
engagement to date on the topic of synthetic data has  
led to our understanding that synthetic data use may 
fall into four areas of value within the health research 
landscape:

• �a privacy enhancing technology (PET),

• �a data science “sandbox” environment for  
research training or exploratory purposes,  
e.g., predictive modeling or to improve algorithms  
or machine learning (ML) workflows, 

• �mechanism to navigate legalities around  
data sharing and/or use (e.g. restrictive data  
use agreements, legal jurisdictions, etc.), and

• �augmenting signals for underrepresented 
populations within and across datasets without 
compromising the structure and format of 
dataset(s).3,17–22 We discuss these areas below,  
focusing on ethical and legal implications and  
subgroup analysis considerations. 

Practical Considerations for Synthetic Data Generation and Use 

paper on the use of AI in the medicinal product life cycle 
mentions that synthetic data is an instrument to “deploy 
differential privacy techniques” and for “increasing model 
performance.”13 

Canada’s Drug Agency (CDA) mentions in their position 
statement on “The Use of Artificial Intelligence in the 
Generation and Reporting of Evidence” that synthetic data 
is “artificial data that is generated from original data and 
a model that is trained to reproduce the characteristics 
and structure of the original data, and are generated using 
AI-based methods, including machine learning algorithms 
and other approaches.”14 The paper also describes the 
potential of AI approaches to produce synthetic data and 

generate external control arms when, for example, it is 
unethical to include a placebo arm in a clinical trial as well 
as to predict clinical effectiveness in different subgroups.14 

The United States (U.S.) Food and Drug Agency’s (FDA) 
Digital Health and Artificial Intelligence Glossary defines 
“synthetic data” as “data that have been created artificially, 
e.g., through statistical modeling, computer simulation, 
so that new values and/or data elements are generated,” 
also noting that “synthetic data are artificial data that are 
intended to mimic the properties and relationships seen in 
real patient data” and are “partially or fully generated using 
computational techniques.”1

While not every entity will agree on  
a single definition for synthetic data,  
we suggest that the term is best defined 
through its uses and applications to 
address a specific context-of-use (COU). 
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Ethical and Legal Implications
Overall optimism around the use of synthetic data can 
be balanced with an acknowledgment of ethical, legal, 
and other similar considerations that accompany original 
RWD sets.23 Given that synthetic data is considered a PET 
that obscures the identities or identifiable information 
about individuals within a dataset, individual-level privacy 
is one reality that synthetic data addresses.24,25 However, 
like other methods of RWD de-identification, synthetic 
data can neither protect group-level privacy/discretion 
nor safeguard against group-level discrimination or 
population profiling, particularly in cases where certain 
groups of individuals might be unfairly targeted in 
tumultuous political or social settings.25 Biomedical 
researchers, AI/ML users, and developers in the US have 
reported general interest in greater ethical and legal 
research on synthetic data and AI/ML.26 For instance, like 
any generative model, synthetic data carries inherent risk 
in amplifying bias(es) within its original dataset(s). Such 
risks should be carefully balanced with any intended 
goals to leverage synthetic data to increase the quantity  
of row-level data within a dataset. 

Purpose-driven validation studies, data curation 
processes to perform edit checks for plausibility, and 
additional evaluations are important to avoid potentially 
erroneous and/or discriminatory exclusion of seemingly 
anomalous biological relationships. These factors are 
essential in ensuring the accuracy of exposure and 
outcome measures and ensuring the fidelity of synthetic 
data against its original RWD set. For instance, there  
is potential for discordance between an individual’s self-
reported gender and sex assignment at birth within an 
original dataset, and synthetic data should preserve this 
discordance. If a disease under investigation is known  
to affect individuals of the male sex, e.g., prostate cancer, 
then synthetic data validation measures should involve 
the careful inclusion of individuals of any self-reported 
gender (including non-male genders) and their clinical 
phenotypes from the original dataset, as well as careful 
exclusion of individuals with genetically confirmed non-
male sex from the original dataset. 

Alongside these best practices is the reality that 
individuals with discordant gender identity and sex 
assignment at birth may be socially or politically targeted 
through data profiling, as they are part of a statistically 
small subgroup. Astute data governance processes 
and procedures based on scientific observations to 

date, like those described above, coupled with strong 
nondiscrimination protections is one way to address 
this issue or risk. Careful study design is also important, 
especially in precision medicine research settings that may 
advertently or inadvertently disclose genotype/phenotype 
discordance.27 Researchers also must carefully design 
longitudinal studies such that synthetic data and prediction 
models do not miss or misattribute underrepresented 
subgroups or subpopulations due to low or varied EHR 
activity/documentation that could be biased or done  
in error.28,29

Data governance standards, best practices or tools are 
needed to support researchers and/or research ethics or 
institutional oversight boards, e.g., Institutional Review 
Boards (IRBs,) as they may encounter and/or oversee the 
generation, integration, or implementation of synthetic 
data or data generation tools in regulated and non-
regulated health research. While this community has yet to 
either develop or broadly disseminate such best practices 
or tools, we propose that key ethical and legal questions 
below are considered locally and on a case-by-case basis. 

   Key Ethical and Legal Questions for Best Practices

• �Should patients have an opportunity to consent 
(broadly, legally, or otherwise) to the specific use of 
their de-identified data for synthetic data generation 
and use for broad or specific purposes? Will patients 
understand when consenting to the use of their data to 
generate and/or become combined with synthetic data? 

• �How should patients become educated about synthetic 
data generation? Should patients require education at 
all if the same legal privacy protections apply to initial 
RWD collection, regardless of subsequent synthetic data 
generation and use?

• �Is informed consent model language presently available 
for synthetic data generation and use? Should IRBs 
evaluate whether participant consent is needed and 
whether the risks outweigh the benefits to synthetic 
data generation and/or use?

• �Would IRBs reviewing and overseeing observational 
studies be less concerned about synthetic data use 
since synthetic data obscures individual-level data?
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• �What practical assurances can researchers provide to 
research oversight boards and research participants 
today around the risk of re-identification, bias, and/or 
group-level discrimination? 

• �Is synthetic data generation and use appropriate for 
observational, non-interventional RWD only? Or might 
there be additional data sources or types to consider 
for broad impact as far as our ability to learn about 
medication benefits and risks? 

• �What are risks or ethical implications to disregarding 
potential uses of synthetic data, such as supporting 
rare disease patient communities that have a vested 
interest in leveraging their data to sufficiently power 
clinical studies, despite universal reidentification risks 
due to low population numbers?

These questions should be addressed prior to synthetic  
data generation, use, and/or implementation, especially 
within consequential health care and/or research 
scenarios. Instances where health care provider 
organizations or other data stewards generate and 
share synthetic datasets as a public service, or might 
apply synthetic data to address cases of missing 
data, are example scenarios. Engagement with rare 
disease advocates is highly encouraged to address 
specific concerns about inherent risks associated with 
reidentification and the risk-benefit tradeoffs to data 
disclosure for purposes of treatment development. 

Efforts to address these questions should also be 
put into context with the existing legal landscape. 
For example, there is currently no specific policy or 
legal authority in the U.S. to supervise or ensure data 
protection and safe synthetic data use/processing and 
no national privacy standard or law to protect individuals 
contributing all forms of RWD, e.g., US Health Insurance 
Portability and Accountability Act (HIPAA) covered and 
non-covered data combined, used to generate robust 
synthetic datasets.30–32 Until an authority or standard is 
codified, legal complaints that arise due to unanticipated 
hardships or harm caused by synthetic data use will be 
solely addressed in the court system and per existing 
laws or rules, such as the US Department of Health and 
Human Services’ Office of Civil Rights rule concerning 

the nondiscrimination provision in Section 1557 of the 
Affordable Care Act (ACA).33 This particular Section of the 
ACA could impose penalties on covered entities who rely 
on algorithm-enabled tools, which would include synthetic 
data generation tools, that result in discriminatory harms. 

Efforts to govern synthetic data should also consider 
datatypes that may be inherently subject to privacy 
risks at either or both individual and group levels. For 
instance, with respect to genomic data, the probability 
that synthetic data can fully preserve the privacy of 
genomic data highly depends on both the technical 
nature, e.g., single nucleotide polymorphisms (SNPs), 
gene copy number, biomarkers, whole genome or exome 
sequencing data, RNA, viral genes, etc., and presentation, 
e.g., aggregated versus individual-level, of the data. Also, 
while synthetic data might be useful to preserve individual 
privacy and maintain statistical inferences regarding 
specific gene-disease associations, it may not ensure 
group-level privacy for individuals within an aggregated 
dataset who share genomic features, e.g., SNPs implicated 
in gene-disease associations. While it may be possible 
to sufficiently de-identify genomic data to accomplish 
research goals while ensuring data privacy, protecting 
individuals from potentially negative downstream 
effects following decisions made based on analyses of 
population-level genomic data continues to be a challenge 
in real-world settings.34

Subgroup Analysis Considerations
Some researchers have described the value of generating 
or using synthetic data across several clinical practice 
domains, like ophthalmology, palliative care, cardiology, 
endocrinology, and radiology (including cancer radiology) 
to better understand or predict disease onset and 
progression.35–41 Yet, given the current reality that 
many individuals may struggle to receive diagnoses for 
either or both rare and common diseases, the result 
is often datasets with documentation biases and/or 
errors for certain patient subgroups, resulting in their 
under-representation within an analytical dataset.29 
Specifically, to avoid associated statistical impacts, patient 
subgroups showing as under-represented categories 
within an analytical dataset are often censored, leading 
to inaccurate predictions and likely unfair or biased 
assessments about those subgroups. 
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Synthetic data augmentation using diverse RWD that 
not only represent patient subgroups, but also contain 
annotations to document their diagnostic and treatment 
journeys within and outside of the health system, e.g., 
observational, non-interventional natural history, patient 
registry, and/or patient-generated data, is a potentially 
viable strategy to improve the reliability of synthetic data 
and reliably amplify underrepresented patient signals 
within a dataset.42 Techniques like the Synthetic Minority 
Over-sampling Technique (SMOTE) or Synthetic Minority 
Augmentation with sequential synthesis using decision 
trees also can be useful to multiply an existing data pool 
or cohort, with the latter showing to be more effective 
than SMOTE to mitigate bias, improve effect estimation, 
and model performance.9,43 Both techniques warrant 
further investigation to ensure that either or both the 
original RWD dataset or synthetic dataset are not limited, 
restricted, or costly, e.g., monetary cost, privacy cost, 
time constraint cost, perpetuating social/legal risk, etc., 
to improve the reliability of synthetic data concerning 
underrepresented or small patient subgroups. 

Synthetic data can be used as a PET, allowing researchers 
to publicly share data without compromising individuals’ 
privacy or data sharing agreements. The U.S. FDA recently 
sought to understand the full scope and potential 
of synthetic data as a PET for special populations, 
e.g., pregnant and lactating persons, as evidenced 
within a 2023 workshop co-convened by the FDA and 
Duke-Margolis.44–46 During this workshop, participants 
shared that synthetic data generation and use carries 
inherent risks and tradeoffs, e.g., capacity to exacerbate 
health disparities and/or health care access issues due 
to algorithmic bias, that should be balanced, based 
on privacy community consensus metrics, with its 
propensity to serve as a privacy-promoting practice. 
Therefore, research partnerships and engagement 
with patient subgroups, with the intent to understand, 
contextualize, and convey engagement proceedings 
on the appropriateness and value of synthetic data 
generation and use is critical. Also, it will be important to 
establish scenarios in which synthetic data augmentation 
might be an inappropriate alternative to foregoing direct 
recruitment of individuals belonging to underrepresented 
or censored subgroups to amplify their statistical 
representation within a dataset. 

Synthetic Data Management Tools & Best 
Practices and Target End-User Developments

Data Management Best Practices and Recommendations 
to Create Fit-for-Use Synthetic Data

RWD quality assurance frameworks and related tools, 
like the HARmonized Protocol Template to Enhance 
Reproducibility (HARPER) and ISPOR SUITABILITY 
Checklist, could be helpful starting points alongside 
other synthetic data quality assurance measures.47,48 The 
HARPER framework provides a structured, standardized 
protocol for researchers focused on documentation and 
methodological transparency. The ISPOR SUITABILITY 
Checklist offers a set of criteria for assessing data fitness 
for purpose. Likewise, an assessment of the value, fidelity, 
representativeness, generalization, and resemblance of 
synthetic data relative to its original RWD set, as well as a 
quality evaluation of the synthetic data generation process 
itself, could be part of the quality evaluation criteria or 
analysis for specific models.49 In cases where a synthetic 
dataset derived from RWD could be used to conduct 
hypothesis-generating studies, such studies should also 
require subsequent replication or validation using an 
RWD source that was not used to initially generate the 
synthetic dataset. This best practice measure can help 
ensure that all data correlations have been preserved 
and fidelity aspects met across original, transformed, 
and referenced datasets. Often, synthetic data can be 
integrated with real-world data, leading to data mixing 
which can make it difficult for researchers to identify 
synthetic data elements, leading to potential bias or errors 
in analysis. To help address this issue, we encourage 
transparency in data usage and analysis. This can be 
done through labeling processes that tag synthetic data 
in datasets.16 Data cards, structured summaries that 
provide important information about a dataset including 
provenance, composition and intended use can also 
enhance transparency and clarity of datasets containing 
synthetic data.50

Alloza et al. 2023, recently added that multiple variables 
should be considered in the process of creating a reliable 
synthetic dataset including, but not limited to, the level 
at which data are synthesized, e.g., patient subgroups, 
intervention location, etc.51 Failure to do so might impact 
the overall quality of the synthesized data.51 We add that, 
in addition to first ensuring the accuracy and reliability of 
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original RWD sets, studying and exploring relationships 
within and between synthetic datasets are necessary 
to demonstrate, to prospective or target end-users, 
consistency in preserving statistical properties across 
multiple synthetic data transformations and controls 
against generative AI model drift. Also, to communicate 
assurances around the reliability of a synthetic dataset, 
it would be critical to provide end-users with pertinent 
metadata for an analytical RWD set and/or clinical trial 
datasets, as well as initially or primarily transformed 
synthetic data when requested. Lastly, we recommend 
that synthetic data generators become deeply familiar 
with any inherent characteristics of and limitations to 
an original RWD set, e.g. data missingness, lack of data 
standardization amongst different RWD sources, etc., and 
clinical trial data to ensure the reliability of the synthetic 
data derivative.52 

Figure 1 summarizes general steps that can be taken 
to create a fit-for-use synthetic dataset using generative 
AI mechanisms. We acknowledge, however, that these 
steps are heavily dependent on transparency in the 
form of access to, or ability to, transfer originally linked 
or unlinked RWD sets. This transparency may prove a 

difficult endeavor, especially where rare disease and/or 
small subgroup datasets are either purposely censored 
and/or original data transfers are either impossible 
or prohibited, e.g., licensed access to data platforms). 
Therefore, whenever possible, data curators should 
implement strong data governance and provenance 
measures to convey both the accuracy and traceability, 
and thus reliability, of both original RWD sets and 
synthetic data derivatives. This could be in the form of, 
for example, standard operating procedures for data 
warehouses that involve documenting and preserving 
RWD linkage details across distributed data networks and 
obtaining mechanisms to request local access to original 
RWD across each data network. Such measures could 
be considered a best practice to support the uptake of 
synthetic data, as regulators like the FDA recommend: 

• �data curators consider potential linkages across 
data sources or additional collection to capture 
important confounders that are either unmeasured  
or imperfectly measured within any original sources 

• �verifying data against its original source.53

Evaluate synthetic  
data for quality, accuracy,  

and reliability

Use generative AI model to 
create new synthetic data with 
statistical properties preserved 

from the original RWD set

Figure 1 | Using Generative AI to Create a Fit-for-Use Synthetic Dataset

Apply synthetic data to  
address a specific research 

question of interest  
to end users

Use RWD to train a generative 
AI model (e.g., LLMs, 

GANs, VAEs) 

Gather RWD from various 
sources to generate a fit-for 

purpose dataset
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From a policy best practice standpoint, transparency in 
model-specific evaluation criteria or analysis methods is 
vitally important, especially in cases where synthetic data 
could become part of an evidentiary package for end-user 
(regulator, HTA, payer, researcher, etc.) review, validation, 
and use. From a technical standpoint, transparency in  
the use of either or both validated or unvalidated metrics 
for different synthetic data generation models would 
be critical to evaluate the validity of study results or 
evidence generated through the inclusion of synthetic 

data. Also, bias assessment tools like APPRAISE could be 
useful to assess RWD sets and their synthetic derivatives 
for bias due to inappropriate study design, and future 
work can confirm the utility and reliability of APPRAISE  
in such cases.54 Clarification around the validity and 
utility of point estimates derived from synthetic datasets 
would also be critical to support and inform end-users  
of synthetic data. 

Practical Considerations for Synthetic Data Generation and Use 

Amid the regulatory acceptability of RWD being largely 
exploratory, an interesting development to date is 
the FDA’s regulatory science research pathway that 
was created for the purposes of exploring the value 
of synthetic data based on its current definition.1,55 

For instance, the FDA’s AI program within their 
Center for Devices and Radiological Health (CDRH) is 
presently examining “the possibilities and limitations of 
supplementing medical patient datasets with synthetic 
data, for example, artificial data that has been partially 
or fully generated using computational techniques.” 
The AI program currently supports four distinct projects 
demonstrating how “real patient datasets can be 
supplemented by creating realistic digital object models, 
digital replicas of acquisition devices, and resulting large-
scale synthetic datasets.”55 Through this AI program, 
CDRH has acknowledged that generative models and the 
resulting synthetic data warrant rapid development and 
policy assessment to better serve patients. Other divisions 
within the FDA, like the Center for Drug Evaluation (CDER) 
and Research and Center for Biologics Evaluation and 
Research (CBER), could potentially follow suit to help drive 
policy science innovation within their respective divisions.

Likewise, the UK’s MHRA provides access to high-
fidelity and medium-fidelity synthetic datasets under 
a non-negotiable data sharing agreement, noting that 
the data could be used for “training purposes or to 
improve algorithms or machine learning workflows.”17 
The UK’s NHS England’s National Disease Registration 
Service also offers Simulacrum, a “dataset that contains 
artificial patient-like cancer data to help researchers 
gain insights,”19 which was used recently to compare 

real-world endpoints, e.g., real-world overall survival, 
within, or gleaned from, the dataset to oncology data 
from patients in the U.S. who participated in the Friends 
of Cancer Research Real-World Evidence Pilot Project 
1.0. This intended to evaluate outcomes among patients 
with immunotherapy-treated advanced non–small-cell 
lung cancer (a rare form of cancer). This method can 
inform similar activities focused on immunotherapy 
development.56 Additionally, in 2022, the EMA released 
a favorable qualification opinion to provide a regulatory 
framework for the application of PROCOVA™, a prognostic 
digital twin (or arguably synthetic data) solution to support 
Phase 2 and 3 clinical trials.57

The FDA recently published a special communication 
discussing possible requirements for “flexible 
mechanisms to keep up with the pace of change in AI 
across biomedicine and health care” and “proficiency in 
evaluating the use of AI in premarket development.”58 
The FDA has authorized over a thousand AI/ML-enabled 
medical devices as of December 2024.59 However, the 
FDA and most regulators have published no specific 
recommendations for synthetic data. Therefore, in 
addition to Figure 1, we also highlight the National 
Institute of Standards and Technology (NIST) Artificial 
Intelligence Risk Management Framework that offers  
a structured approach to assessing and managing risks 
associated with AI systems.60 The framework is organized 
around four core functions to assess AI risk: govern, map, 
measure, and manage. In line with recommendations 
from researchers and stakeholders working with synthetic 
data generated by generative AI, the NIST “Govern” 
function emphasizes the importance of understanding, 
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Steps for Risk Assessment  
of Synthetic Data Generation 
Using Generative AI

Step 1
Define the question of interest that will 
be addressed by the synthetic dataset 
generated through generative AI.

Step 2
Define the COU for the synthetic dataset 
generated through generative AI. 

Step 3
Assess the risk, relevance, reliability, and 
quality of synthetic data generated through 
generative AI. Risk can be assessed using the 
NIST Artificial Intelligence Risk Management 
Framework. Relevance, reliability, and 
quality can be assessed using RWD/E 
assessments, including determining fitness 
for use. 

Step 4
Develop a plan to establish the relevance, 
reliability, and quality of synthetic data 
generated through generative AI output 
within the COU. 

Step 5
Execute the plan. 

Step 6
Document the results of the relevance, 
reliability, and quality assessment plan  
and discuss deviations from the plan. 

Step 7
Determine the adequacy of the synthetic 
data generated through generative AI for 
the COU.

managing, and documenting the legal and regulatory 
requirements associated with AI use. As a best practice, 
we recommend stakeholders engage with the NIST 
framework and assess risk of synthetic data generated 
through generative AI to align guidance standards with 
synthetic data use. With the NIST framework and 
regulatory guidance and developments in mind, 
we recommend that practitioners conducting risk 
assessments of synthetic data generation using 
generative AI take the following seven steps.

These proposed steps were adapted from the FDA’s Risk-
Based Credibility Assessment Framework, as outlined in 
the draft guidance “Considerations for the Use of Artificial 
Intelligence to Support Regulatory Decision-Making for 
Drug and Biological Products.”61 Therefore, we believe this 
proposed risk-based credibility assessment framework 
provides a structured and regulator-aligned process for 
establishing and evaluating the credibility of synthetic data 
generated using generative AI within a specific COU.
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CONCLUSION 

Regulators outside of the U.S., such as the EMA and MHRA, who each have explicit goals 
and interests to leverage synthetic data should take interest in sharing the results of their 
explorations broadly with the regulatory community to help avoid siloed thinking across 
regulatory settings globally. Synthetic data acceptability requires a culture of learning and 
transparency among not only regulators, but also end-users of synthetic data and those 
participating in the synthetic data generation and exchange pipeline, e.g., sponsors, patients, 
IRBs, health care providers, etc. Members of industry, academia, and government alike should 
openly and ongoingly share both successes and challenges in using synthetic data to drive 
clinical research and foster precompetitive approaches toward unified research framework. 
Last but not least, alongside scientific best practices, e.g., bias assessments, transparency, 
etc., close considerations of ethical and legal implications are key to understanding both the 
benefits and risks associated with synthetic data generation and use. Where synthetic data 
generated using generative AI is concerned, we recommend that principles from current RWD 
and AI best practice frameworks and guidance documents be applied or adapted, as proposed 
herein and when appropriate, to address potential risk within a given COU.
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